1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Increase in interparticle distance of colloidal dipolar chain in nematic liquid crystal by trapping it on splay-bend wall
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/2/4/10.1063/1.4769088
1.
1. O. D. Lavrentovich, P. Pasini, C. Zannoni, and S. Zumer, Defects in Liquid Crystals: Computer Simulations, Theory and Experiments (Kluwer academic Publishers, London, 2001).
2.
2. H.-R. Trebin, Liq. Cryst. 24, 127 (1998).
http://dx.doi.org/10.1080/026782998207659
3.
3. P. G. Gennes and J. Prost, The Physics of Liquid Crystals (Oxford, New York, 1995), p. 166.
4.
4. A. Lozar, W. Schopf, I. Rehberg, D. Svensek, and L. Lramer, Phys. Rev. E 72. 051713 (2005).
http://dx.doi.org/10.1103/PhysRevE.72.051713
5.
5. E. P. Raynes, Electron. Lett. 9, 101 (1973).
http://dx.doi.org/10.1049/el:19730075
6.
6. M. Kleman and O. D. Lavrentovich, Philos. Mag. 86, 4117 (2006).
http://dx.doi.org/10.1080/14786430600593016
7.
7. S. Chandrasekhar, Liquid Crystals (Cambridge University Press, Cambridge, 1992), p. 135.
8.
8. P. Poulin, H. Stark, T. C. Lubensky, and D. A. Weitz, Science 275, 1770 (1997).
http://dx.doi.org/10.1126/science.275.5307.1770
9.
9. H. Stark, Phys. Rep 351, 387 (2001).
http://dx.doi.org/10.1016/S0370-1573(00)00144-7
10.
10. I. Musevic, M. Skarabot, U. Tkalec, M. Ravnik, and S. Zumer, Science 313, 954 (2006).
http://dx.doi.org/10.1126/science.1129660
11.
11. U. Ognysta, A. Nych, V. Nazarenko, M. Skarabot, and I. Musevic, Langmuir 25, 12092 (2009).
http://dx.doi.org/10.1021/la901719t
12.
12. M. Humar, M. Skarabot, M. Ravnik, S. Zumer, I. Poberaj, D. Babic, and I. Musevic, Eur. Phys. J. E 27, 73 (2008).
http://dx.doi.org/10.1140/epje/i2008-10353-0
13.
13. T. Yamamoto, Y. Tabe, and H. Yokoyama, Mol. Cryst. Liq. Cryst. 498, 1 (2009).
http://dx.doi.org/10.1080/15421400802611971
14.
14. B. Lev, S. B. Chernyshuk, T. Yamamoto, J. Yamamoto, and H. Yokoyama, Phys. Rev. E 78, 020701 (2008).
http://dx.doi.org/10.1103/PhysRevE.78.020701
15.
15. G. M. Koenig, Jr., I.-H. Lin, and N. L. Abbott, Proc. Natl. Acad. Sci. USA 107, 3998 (2010).
http://dx.doi.org/10.1073/pnas.0910931107
16.
16. C. M. Noel, F. Giulieri, R. Combarieu, G. Bossis, and A. M. Chaze, Colloids and Surfaces A: Physicochem. Eng. Aspects 295, 246 (2007).
http://dx.doi.org/10.1016/j.colsurfa.2006.09.019
17.
17. B. Lev, A. Nych, U. Ognysta, D. Reznikov, S. Chernyshuk, and V. Nazarenko, Pis'ma Zh. Eksp. Teor. Fiz. 75, 393 (2002)
17.B. Lev, A. Nych, U. Ognysta, D. Reznikov, S. Chernyshuk, and V. Nazarenko, [JETP Lett. 75, 322 (2002)].
http://dx.doi.org/10.1134/1.1485260
18.
18. O. P. Pishnyak, S. Tang, J. R. Kelly, S. V. Shiyanovskii, and O. D. Lavrentovich, Phys. Rev. Lett. 99, 127802 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.127802
19.
19. T. Suzuki, S. Nishida, M. Suzuki, and S. Kaneko, J. Appl. Phys. 89, 1 (2001).
http://dx.doi.org/10.1063/1.1328057
20.
20. J.-I. Fukuda, H. Stark, M. Yoneya, and H. Yokoyama, Phys. Rev. E 69, 041706 (2004).
http://dx.doi.org/10.1103/PhysRevE.69.041706
21.
21. P. Yeh and C. Gu, Optics of liquid crystal displays (Wiley, New York, 2009) p. 325.
22.
22. P. Poulin and D. A. Weitz, Phys. Rev. E 57, 626 (1998).
http://dx.doi.org/10.1103/PhysRevE.57.626
23.
23. P. Poulin, H. Stark, T. C. Lubensky, and D. A. Weitz, Science 275, 1770 (1997).
http://dx.doi.org/10.1126/science.275.5307.1770
24.
24. H. Stark, J. Stelzer, and R. Bernhard, Eur. Phys. J. B 10, 515 (1999).
http://dx.doi.org/10.1007/s100510050881
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/4/10.1063/1.4769088
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Optical microscope images of the fabricated cell taken after applying electric fields of (a) 0 V/μm and (b) 0.41 V/μm. A nail symbol “T” indicates the NLC director, with its end going outward through the surface of the page. (c) x-z cross section of calculated equipotential lines upon applying a voltage of 30 V between the electrodes. At points A and B in (c), NLC molecules were rotated in the clockwise and counterclockwise directions upon applying the electric field, as shown in (d) and (e), respectively.

Image of FIG. 2.

Click to view

FIG. 2.

Optical microscope images of colloidal dipolar chain (r = 2.5 μm) taken after applying electric fields of (a) 0 V/μm and (b) 0.41 V/μm. Their director fields on the mid-gap plane are shown in (c) and (d). In (c) and (d), black dots indicate hedgehog defects.

Image of FIG. 3.

Click to view

FIG. 3.

Applied electric field dependences of the reduced interparticle distance L/r for r = 2.5, 2.0 and 1.5 μm.

Image of FIG. 4.

Click to view

FIG. 4.

Optical microscope images of colloidal dipolar chain (r = 2.5 μm) taken (a) after applying an electric field of 0.46 V/μm (above the maximum electric field) and (b) after removing the electric field. Two particles are completely separated.

Image of FIG. 5.

Click to view

FIG. 5.

Applied electric field dependences of the reduced interparticle distance L/r for r = 9, 12 and 15 μm. The inset shows the enlarged plot for E ≤ 0.11 V/μm.

Loading

Article metrics loading...

/content/aip/journal/adva/2/4/10.1063/1.4769088
2012-11-26
2014-04-24

Abstract

We demonstrate an increase in the interparticle distance of a colloidal dipolar chain in a nematic liquid crystal(NLC). Applying an in-plane electric field perpendicular to the rubbing direction induces a splay-bend wall defect in the middle of the electrode gap, which traps a dipolar chain. Above the Freedericksz threshold electric field, the interparticle distance increases with increasing applied electric field, owing to the reorientation of the NLC molecules. The maximum increase is 32% of the particle diameter.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/2/4/1.4769088.html;jsessionid=49f5re050gdkc.x-aip-live-03?itemId=/content/aip/journal/adva/2/4/10.1063/1.4769088&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Increase in interparticle distance of colloidal dipolar chain in nematic liquid crystal by trapping it on splay-bend wall
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/4/10.1063/1.4769088
10.1063/1.4769088
SEARCH_EXPAND_ITEM