1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Increase in interparticle distance of colloidal dipolar chain in nematic liquid crystal by trapping it on splay-bend wall
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/2/4/10.1063/1.4769088
1.
1. O. D. Lavrentovich, P. Pasini, C. Zannoni, and S. Zumer, Defects in Liquid Crystals: Computer Simulations, Theory and Experiments (Kluwer academic Publishers, London, 2001).
2.
2. H.-R. Trebin, Liq. Cryst. 24, 127 (1998).
http://dx.doi.org/10.1080/026782998207659
3.
3. P. G. Gennes and J. Prost, The Physics of Liquid Crystals (Oxford, New York, 1995), p. 166.
4.
4. A. Lozar, W. Schopf, I. Rehberg, D. Svensek, and L. Lramer, Phys. Rev. E 72. 051713 (2005).
http://dx.doi.org/10.1103/PhysRevE.72.051713
5.
5. E. P. Raynes, Electron. Lett. 9, 101 (1973).
http://dx.doi.org/10.1049/el:19730075
6.
6. M. Kleman and O. D. Lavrentovich, Philos. Mag. 86, 4117 (2006).
http://dx.doi.org/10.1080/14786430600593016
7.
7. S. Chandrasekhar, Liquid Crystals (Cambridge University Press, Cambridge, 1992), p. 135.
8.
8. P. Poulin, H. Stark, T. C. Lubensky, and D. A. Weitz, Science 275, 1770 (1997).
http://dx.doi.org/10.1126/science.275.5307.1770
9.
9. H. Stark, Phys. Rep 351, 387 (2001).
http://dx.doi.org/10.1016/S0370-1573(00)00144-7
10.
10. I. Musevic, M. Skarabot, U. Tkalec, M. Ravnik, and S. Zumer, Science 313, 954 (2006).
http://dx.doi.org/10.1126/science.1129660
11.
11. U. Ognysta, A. Nych, V. Nazarenko, M. Skarabot, and I. Musevic, Langmuir 25, 12092 (2009).
http://dx.doi.org/10.1021/la901719t
12.
12. M. Humar, M. Skarabot, M. Ravnik, S. Zumer, I. Poberaj, D. Babic, and I. Musevic, Eur. Phys. J. E 27, 73 (2008).
http://dx.doi.org/10.1140/epje/i2008-10353-0
13.
13. T. Yamamoto, Y. Tabe, and H. Yokoyama, Mol. Cryst. Liq. Cryst. 498, 1 (2009).
http://dx.doi.org/10.1080/15421400802611971
14.
14. B. Lev, S. B. Chernyshuk, T. Yamamoto, J. Yamamoto, and H. Yokoyama, Phys. Rev. E 78, 020701 (2008).
http://dx.doi.org/10.1103/PhysRevE.78.020701
15.
15. G. M. Koenig, Jr., I.-H. Lin, and N. L. Abbott, Proc. Natl. Acad. Sci. USA 107, 3998 (2010).
http://dx.doi.org/10.1073/pnas.0910931107
16.
16. C. M. Noel, F. Giulieri, R. Combarieu, G. Bossis, and A. M. Chaze, Colloids and Surfaces A: Physicochem. Eng. Aspects 295, 246 (2007).
http://dx.doi.org/10.1016/j.colsurfa.2006.09.019
17.
17. B. Lev, A. Nych, U. Ognysta, D. Reznikov, S. Chernyshuk, and V. Nazarenko, Pis'ma Zh. Eksp. Teor. Fiz. 75, 393 (2002)
17.B. Lev, A. Nych, U. Ognysta, D. Reznikov, S. Chernyshuk, and V. Nazarenko, [JETP Lett. 75, 322 (2002)].
http://dx.doi.org/10.1134/1.1485260
18.
18. O. P. Pishnyak, S. Tang, J. R. Kelly, S. V. Shiyanovskii, and O. D. Lavrentovich, Phys. Rev. Lett. 99, 127802 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.127802
19.
19. T. Suzuki, S. Nishida, M. Suzuki, and S. Kaneko, J. Appl. Phys. 89, 1 (2001).
http://dx.doi.org/10.1063/1.1328057
20.
20. J.-I. Fukuda, H. Stark, M. Yoneya, and H. Yokoyama, Phys. Rev. E 69, 041706 (2004).
http://dx.doi.org/10.1103/PhysRevE.69.041706
21.
21. P. Yeh and C. Gu, Optics of liquid crystal displays (Wiley, New York, 2009) p. 325.
22.
22. P. Poulin and D. A. Weitz, Phys. Rev. E 57, 626 (1998).
http://dx.doi.org/10.1103/PhysRevE.57.626
23.
23. P. Poulin, H. Stark, T. C. Lubensky, and D. A. Weitz, Science 275, 1770 (1997).
http://dx.doi.org/10.1126/science.275.5307.1770
24.
24. H. Stark, J. Stelzer, and R. Bernhard, Eur. Phys. J. B 10, 515 (1999).
http://dx.doi.org/10.1007/s100510050881
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/4/10.1063/1.4769088
Loading
/content/aip/journal/adva/2/4/10.1063/1.4769088
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/2/4/10.1063/1.4769088
2012-11-26
2014-07-22

Abstract

We demonstrate an increase in the interparticle distance of a colloidal dipolar chain in a nematic liquid crystal(NLC). Applying an in-plane electric field perpendicular to the rubbing direction induces a splay-bend wall defect in the middle of the electrode gap, which traps a dipolar chain. Above the Freedericksz threshold electric field, the interparticle distance increases with increasing applied electric field, owing to the reorientation of the NLC molecules. The maximum increase is 32% of the particle diameter.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/2/4/1.4769088.html;jsessionid=iwffb7o394vf.x-aip-live-06?itemId=/content/aip/journal/adva/2/4/10.1063/1.4769088&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Increase in interparticle distance of colloidal dipolar chain in nematic liquid crystal by trapping it on splay-bend wall
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/4/10.1063/1.4769088
10.1063/1.4769088
SEARCH_EXPAND_ITEM