1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Inhomogeneous linewidth broadening and radiative lifetime dispersion of size dependent direct bandgap radiation in Si quantum dot
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/2/4/10.1063/1.4769362
1.
1. L. T. Canham, Appl. Phys. Lett. 57, 1046 (1990).
http://dx.doi.org/10.1063/1.103561
2.
2. S. S. Walavalkar, C. E. Hofmann, A. P. Homyk, M. D. Henry, H. A. Atwater, and A. Scherer, Nano Lett. 10, 4423 (2010).
http://dx.doi.org/10.1021/nl102140k
3.
3. C. Huh, K.-H. Kim, B. K. Kim, W. Kim, H. Ko, C.-J. Choi, and G. Y. Sung, Adv. Mater. 22, 5058 (2010).
http://dx.doi.org/10.1002/adma.201001572
4.
4. D. P. Puzzo, E. J. Henderson, M. G. Helander, Z Wang, G. A. Ozin, and Z. Lu, Nano Lett. 11, 1585 (2011).
http://dx.doi.org/10.1021/nl1044583
5.
5. H. S. Be, T. G. Kim, C. N. Whang, S. Im, J. S. Yun, and J. H. Song, J. Appl. Phys. 91, 4078 (2002).
http://dx.doi.org/10.1063/1.1452768
6.
6. G.-R. Lin and C.-J. Lin, Appl. Phys. Lett. 91, 072103 (2007).
http://dx.doi.org/10.1063/1.2769962
7.
7. G.-R. Lin, C.-J. Lin, and C.-K. Lin, Opt. Express 15, 2555 (2007).
http://dx.doi.org/10.1364/OE.15.002555
8.
8. G.-R. Lin, Y.-H. Pai, and C.-T. Lin, IEEE J. Lightwave Technol. 26, 1486 (2008).
http://dx.doi.org/10.1109/JLT.2008.922177
9.
9. R. Huang, H. Dong, D. Wang, K. Chen, H. Ding, X. Wang, W. Li, J. Xu, and Z. Ma, Appl. Phys. Lett. 92, 181106 (2008).
http://dx.doi.org/10.1063/1.2920819
10.
10. Y. Rui, S. Li, J. Xu, C. Song, X. Jiang, W. Li, K. Chen, Q. Wang, and Y. Zuo, J. Appl. Phys. 110, 064322 (2011).
http://dx.doi.org/10.1063/1.3641989
11.
11. L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, and F. Priolo, Nature 408, 440 (2000).
http://dx.doi.org/10.1038/35044012
12.
12. G.-R. Lin, C.-L. Wu, C.-W. Lian, and H.-C. Chang, Appl. Phys. Lett. 95, 021106 (2009).
http://dx.doi.org/10.1063/1.3179413
13.
13. G.-R. Lin, C.-W. Lian, C.-L. Wu, and Y.-H. Lin, Opt. Express 18, 9213 (2010).
http://dx.doi.org/10.1364/OE.18.009213
14.
14. C. Delerue, G. Allan, and M. Lannoo, Phys Rev. B. 48, 11024 (1993).
http://dx.doi.org/10.1103/PhysRevB.48.11024
15.
15. M. V. Wolkin, J. Jorne, P. M. Fauchet, G. Allan, and C. Delerue, Phys. Rev. Lett. 82, 197 (1999).
http://dx.doi.org/10.1103/PhysRevLett.82.197
16.
16. A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, P. Mutti, G. Ghislotti, and L. Zanghieri, Appl. Phys. Lett. 70, 348 (1997).
http://dx.doi.org/10.1063/1.118410
17.
17. H. Nishikawa, E. Stahlbush, and H. Stathis, Phys. Rev. B 60, 15910 (1999).
http://dx.doi.org/10.1103/PhysRevB.60.15910
18.
18. M. Sykora, L. Mangolini, D. Schaller, U. Kortshagen, D. Jurbergs, and I. Klimov, Phys. Rev. Lett. 100, 067401 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.067401
19.
19. J. Valenta, A. Fucikova, I. Pelant, K. Kusova, K. Dohnalova, A. Aleknavicius, O. Cibulka, A. Fojtik, and G. Kada, N. J. Phys. 10, 073022 (2008).
http://dx.doi.org/10.1088/1367-2630/10/7/073022
20.
20. B.-H. Lai, C.-H. Cheng, Y.-H. Pai, and G.-R. Lin, Opt. Express 18, 4449 (2010).
http://dx.doi.org/10.1364/OE.18.004449
21.
21. M. I. Vexler, S. E. Tyaginov, and A. F. Shulekin, J. Phys.: Condens. Matter 17, 8057 (2005).
http://dx.doi.org/10.1088/0953-8984/17/50/023
22.
22. X. Zianni and A. G. Nassiopoulou, J. Appl. Phys. 100, 074312 (2006).
http://dx.doi.org/10.1063/1.2356907
23.
23. H. S. Bae, T. G. Kim, C. N. Whang, S. Im, J. S. Yun, and J. H. Song, J. Appl. Phys. 91, 4078 (2002).
http://dx.doi.org/10.1063/1.1452768
24.
24. L. Rebohle, J. von Borany, W. Skorupa, H. Frob, and S. Niedermeier, Appl. Phys. Lett. 77, 969 (2000).
http://dx.doi.org/10.1063/1.1289032
25.
25. R. M. Mehra, V. Agarwal, V. A. Singh, and P. C. Mathur, J. Appl. Phys. 83, 2235 (1998).
http://dx.doi.org/10.1063/1.366962
26.
26. S. Takeoka, M. Fujii, and S. Hayashi, Phys Rev. B. 62, 16820 (2000).
http://dx.doi.org/10.1103/PhysRevB.62.16820
27.
27. M. Dovrat, Y. Goshen, J. Jedrzejewski, I. Balberg, and A. Sa'ar, Phys Rev. B. 69, 155311 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.155311
28.
28. D. Pacifici, E. C. Moreira, G. Franzo`, V. Martorino, F. Priolo, and F. Iacona, Phys Rev. B. 65, 144109 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.144109
29.
29. G.-R. Lin, C.-J. Lin, and K.-C. Yu, J. Appl. Phys. 96, 3025 (2004).
http://dx.doi.org/10.1063/1.1775041
30.
30. C.-J. Lin, C.-K. Lee, W.-G. Diau, and G.-R. Lin, J. Electrochem. Soc. 153, E25 (2006).
http://dx.doi.org/10.1149/1.2150127
31.
31. X. D. Pi, R. W. Liptak, J. D. Nowak, N. P. Wells, C. B. Carter, S. A. Campbell, and U. Kortshagen, Nanotechnology 19, 245603 (2008).
http://dx.doi.org/10.1088/0957-4484/19/24/245603
32.
32. W. D. A. M. de Boer, D. Timmerman, K. Dohnalova, I. N. Yassievich, H. Zhang, W. J. Buma, and T. Gregorkiewicz, Nature Nanotech. 5, 878 (2010).
http://dx.doi.org/10.1038/nnano.2010.236
33.
33. L.-W. Wang and A. Zunger, J. Phys. Chem. 98, 2158 (1994).
http://dx.doi.org/10.1021/j100059a032
34.
34. S. Hybertsen, Phys. Rev. Lett. 72, 1514 (1994).
http://dx.doi.org/10.1103/PhysRevLett.72.1514
35.
35. D. Kovalev, H. Heckler, M. Ben-Chorin, G. Polisski, M. Schwartzkopff, and F. Koch, Phys. Rev. Lett. 81, 2803 (1998).
http://dx.doi.org/10.1103/PhysRevLett.81.2803
36.
36. M. Sykora, L. Mangolini, R. D. Schaller, U. Kortshagen, D. Jurbergs, and V. I. Klimov, Phys. Rev. Lett. 100, 067401 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.067401
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/4/10.1063/1.4769362
Loading
/content/aip/journal/adva/2/4/10.1063/1.4769362
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/2/4/10.1063/1.4769362
2012-11-26
2014-10-25

Abstract

The SiOx (SiOx:Si-QDs) with buried Si quantum dots (Si-QDs) is synthesized by plasma-enhanced chemical vapor deposition(PECVD), and the size-dependent wave-function of Si-QDs embedded in Si-rich SiO2 matrix is experimentally and theoretically analyzed to reformulate its bandgap energy as Eg(d) = 1.12+5.83/d1.78. The photoluminescent lifetime of Si-QDs is dominated by the non-phonon assisted radiative recombination. Shrinking the Si-QD size from 4.3 to 1.9 nm increases the overlapping probability of electron-hole wave-functions in Si-QD to shorten the non-phonon assisted radiative lifetime from 6.3 μs to 83 ns. Fitting the time-resolved photoluminescence trace with a stretched exponential decay function reveals a lifetime dispersion factor. The lifetime dispersion greatly reduced from 0.8 to 0.39 by enlarging the size distribution of Si-QDs from 0.2 to 1.1 nm, which elucidates the inhomogeneous linewidth broadening feature of Si-QDs. Based on the simulation of non-phonon assisted recombination process, the full-band stretched exponential decay analysis confirms the correlation between inhomogeneous linewidth broadening and lifetime dispersion in Si-QDs.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/2/4/1.4769362.html;jsessionid=ao3a3dj3rs835.x-aip-live-03?itemId=/content/aip/journal/adva/2/4/10.1063/1.4769362&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Inhomogeneous linewidth broadening and radiative lifetime dispersion of size dependent direct bandgap radiation in Si quantum dot
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/4/10.1063/1.4769362
10.1063/1.4769362
SEARCH_EXPAND_ITEM