1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Thick CoFeB with perpendicular magnetic anisotropy in CoFeB-MgO based magnetic tunnel junction
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/2/4/10.1063/1.4771996
1.
1. J. C. Slonczewski, J. Magn. Magn. Mater. 159, L1 (1996).
http://dx.doi.org/10.1016/0304-8853(96)00062-5
2.
2. L. Berger, Phys. Rev. B 54, 9353 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.9353
3.
3. E. B. Myers, D. C. Ralph, J. A. Katine, R. N. Louie, and R. A. Buhrman, Science 285, 867 (1999).
http://dx.doi.org/10.1126/science.285.5429.867
4.
4. M. Tsoi, A. G. M. Jansen, J. Bass, W.-C. Chiang, M. Seck, V. Tsoi, and P. Wyder, Phys. Rev. Lett. 80, 4281 (1998).
http://dx.doi.org/10.1103/PhysRevLett.80.4281
5.
5. Y. Huai, F. Albert, P. Nguyen, M. Pakala, and T. Valet, Appl. Phys. Lett. 84, 3118 (2004).
http://dx.doi.org/10.1063/1.1707228
6.
6. H. Meng, J. Wang, Z. Diao, and J. P. Wang, J. Appl. Phys. 97, 10C926 (2005).
http://dx.doi.org/10.1063/1.1857651
7.
7. S. D. Bader and S. S. P. Parkins, Annu. Rev. Condens. Mater. Phys. 1, 71 (2010).
http://dx.doi.org/10.1146/annurev-conmatphys-070909-104123
8.
8. S. Ikeda, K. Miura, H. Yamamoto, K. Mizunuma, H. D. Gan, M. Endo, S. Kanai, J. Hayakawa, F. Matsukura, and H. Ohno, Nature Mater. 9, 721 (2010).
http://dx.doi.org/10.1038/nmat2804
9.
9. K. Yakushiji, T. Saruya, H. Kubota, A. Fukushima, T. Nagahama, S. Yuasa, and K. Ando, Appl. Phys. Lett. 97, 232508 (2010).
http://dx.doi.org/10.1063/1.3524230
10.
10. D. C. Worledge, G. Hu, David W. Abraham, J. Z. Sun, P. L. Trouilloud, J. Nowak, S. Brown, M. C. Gaidis, E. J. O’Sullivan, and R. P. Robertazzi, Appl. Phys. Lett. 98, 022501 (2011).
http://dx.doi.org/10.1063/1.3536482
11.
11. R. Sbiaa, S. Y. H. Lua, R. Law, H. Meng, R. Lye, and H. K. Tan, J. Appl. Phys. 109, 07C707 (2011).
http://dx.doi.org/10.1063/1.3540361
12.
12. H. Meng, W. H. Lum, R. Sbiaa, S. Y. H. Lua, and H. K. Tan, J. Appl. Phys. 110, 033904 (2011).
http://dx.doi.org/10.1063/1.3611426
13.
13. X. Jiang, R. Moriya, and S. Parkin, Appl. Phys. Lett. 100, 172407 (2012).
http://dx.doi.org/10.1063/1.4704916
14.
14. W.-G. Wang, M. Li, S. Hageman, and C. L. Chien, Nat. Mat. 11, 64 (2012).
http://dx.doi.org/10.1038/nmat3171
15.
15. H. Meng, R. Sbiaa, M. A. K. Akhtar, R. S. Liu, V. B. Naik, and C. C. Wang, Appl. Phys. Lett. 100, 122405 (2012).
http://dx.doi.org/10.1063/1.3695168
16.
16. J.-H. Park, Y. Kim, W. C. Lim, J. H. Kim, S. H. Park, J. H. Kim, W. Kim, K. W. Kim, J. H. Jeong, K. S. Kim, H. Kim, Y. J. Lee, S. C. Oh, J. E. Lee, S. O. Park, S. Watts, D. Apalkov, V. Nikitin, M. Krounbi, S. Jeong, S. Choi, H. K. Kang, and C. Chung, Symposium on VLSI Technology Digest of Technical Papers (IEEE) 57 (2012).
17.
17. H. Sato, M. Yamanouchi, S. Ikeda, S. Fukami, F. Matsukura, and H. Ohno, Appl. Phys. Lett. 101, 022414 (2012).
http://dx.doi.org/10.1063/1.4736727
18.
18. S. Y. Jang, C.-Y. You, S. H. Lim, and S. R. Lee, J. Appl. Phys. 109, 013901 (2011).
http://dx.doi.org/10.1063/1.3527968
19.
19. B. D. Cullity, Introduction to Magnetic Materials (Addison-Wesley, Reading, MA, 1972).
20.
20. S. Y. Jang, S. H. Lim, and S. R. Lee, J. Appl. Phys. 107, 09C707 (2010).
http://dx.doi.org/10.1063/1.3355992
21.
21. S. Ikeda, J. Hayakawa, Y. Ashizawa, Y. M. Lee, K. Miura, H. Hasegawa, M. Tsunoda, F. Matsukura, and H. Ohno, Appl. Phys. Lett. 93, 082508 (2008).
http://dx.doi.org/10.1063/1.2976435
22.
22. S. V. Karthik, Y. K. Takahashi, T. Ohkubo, K. Hono, S. Ikeda, and H. Ohno, J. Appl. Phys. 106, 023920 (2009).
http://dx.doi.org/10.1063/1.3182817
23.
23. T. Miyajima, T. Ibusuki, S. Umehara, M. Sato, S. Eguchi, M. Tsukada, and Y. Kataoka, Appl. Phys. Lett. 94, 122501 (2009).
http://dx.doi.org/10.1063/1.3106624
24.
24. Y. Yang, W. X. Wang, Y. Yao, H. F. Liu, H. Naganuma, T. S. Sakul, X. F. Han, and R. C. Yu, Appl. Phys. Lett. 101, 012406 (2012).
http://dx.doi.org/10.1063/1.4732463
25.
25. K. Mizunuma, S. Ikeda, J. H. Park, H. Yamamoto, H. Gan, K. Miura, H. Hasegawa, J. Hayakawa, F. Matsukura, and H. Ohno, Appl. Phys. Lett. 95, 232516 (2009).
http://dx.doi.org/10.1063/1.3265740
26.
26. Z. Kugler, V. Drewello, M. Schafers, J. Schmalhorst, G. Reiss, and A. Thomas, J. Magn. Magn. Mater. 323, 198 (2011).
http://dx.doi.org/10.1016/j.jmmm.2010.08.038
27.
27. S. Pinitsoontorn, A. Cerezo, A. K. Petford-Long, D. Mauri, L. Folks, and M. J. Carey, Appl. Phys. Lett. 93, 071901 (2008).
http://dx.doi.org/10.1063/1.2973045
28.
28. Y. Lu, B. Lépine, G. Jézéquel, S. Ababou, M. Alnot, J. Lambert, A. Renard, M. Mullet, C. Deranlot, H. Jaffrès, F. Petroff, and J.-M. George, J. Appl. Phys. 108, 043703 (2010).
http://dx.doi.org/10.1063/1.3465308
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/4/10.1063/1.4771996
Loading
/content/aip/journal/adva/2/4/10.1063/1.4771996
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/2/4/10.1063/1.4771996
2012-12-12
2014-09-21

Abstract

We have investigated the effect of an ultra-thin Ta insertion in the CoFeB (CoFeB/Ta/CoFeB) free layer (FL) on magnetic and tunneling magnetoresistance (TMR) properties of a CoFeB-MgO system with perpendicular magnetic anisotropy (PMA). It is found that the critical thickness (t c ) to sustain PMA is doubled (t c = 2.6 nm) in Ta-inserted CoFeB FL as compared to single CoFeB layer (t c = 1.3 nm). While the effective magnetic anisotropy is found to increase with Ta insertion, the saturation magnetization showed a slight reduction. As the CoFeB thickness increasing, the thermal stability of Ta inserted structure is significantly increased by a factor of 2.5 for total CoFeB thickness less than 2 nm. We have observed a reasonable value of TMR for a much thicker CoFeB FL (thickness = 2-2.6 nm) with Ta insertion, and without significant increment in resistance-area product. Our results reveal that an ultra-thin Ta insertion in CoFeB might pay the way towards developing the high-density memory devices with enhanced thermal stability.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/2/4/1.4771996.html;jsessionid=3b6cmtwc7sjx4.x-aip-live-03?itemId=/content/aip/journal/adva/2/4/10.1063/1.4771996&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Thick CoFeB with perpendicular magnetic anisotropy in CoFeB-MgO based magnetic tunnel junction
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/4/10.1063/1.4771996
10.1063/1.4771996
SEARCH_EXPAND_ITEM