1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
The inquiry of liquids and glass transition by heat capacity
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/2/4/10.1063/1.4773224
1.
1. T. Iidea and R. I. L. Guthrie, The Physical Properties of Liquid Metals (Clarendon press, Oxford, 1988).
2.
2. J. A. Barker and D. Henderson, Rev. Mod. Phys. 48, 587 (1976).
http://dx.doi.org/10.1103/RevModPhys.48.587
3.
3. F. N. Keutsch and R. J. Saykally, PNAS 98, 10533 (2001).
http://dx.doi.org/10.1073/pnas.191266498
4.
4. L. D. Landau and E. M. Lifshitz, Statistical Physics (Beijing World Publishing Corporation by arrangement with Butterworth-Heineman, 1999).
5.
5. J. Frenkel, Kinetic Theory of Liquids, edited by R. H. Fowler, P. Kapitza, and N. F. Mott (Oxford University Press, 1947), p. 188.
6.
6. J. M. Ziman, Models of disorder (Cambridge University Press, 1979).
7.
7. J. P. Hansen and I. R. McDonald, Theory of simple liquids (Elsevier, 2007).
8.
8. E. Donth, The Glass Transition: Relaxation Dynamics in liquids and Disordered Materials (Soringer-Verlag Berlin Herdelber, 2001).
9.
9. J. Jäckle, Rep. Prog. Phys. 49, 171 (1986).
http://dx.doi.org/10.1088/0034-4885/49/2/002
10.
10. J. C. Dyre, Rev. Mod. Phys. 78, 953 (2006).
http://dx.doi.org/10.1103/RevModPhys.78.953
11.
11. P. G. Debenedetti and F. H. Stillinger, Nature 410, 259 (2001).
http://dx.doi.org/10.1038/35065704
12.
12. J. C. Dyre, N. B. Olse, and T. Christensen, Phys. Rev. B 53, 2171 (1996).
http://dx.doi.org/10.1103/PhysRevB.53.2171
13.
13. W. Götze and L. Sjögren, Rep. Prog. Phys. 55, 241 (1992).
http://dx.doi.org/10.1088/0034-4885/55/3/001
14.
14. S. P. Das, Rep. Prog. Phys. 76, 785 (2004).
http://dx.doi.org/10.1103/RevModPhys.76.785
15.
15. M. H. Cohen and D. J. Turnbull, Chem. Phys. 31, 1164 (1959).
http://dx.doi.org/10.1063/1.1730566
16.
16. G. Adam and J. H. Gibbs, J. Chem. Phys. 43, 139 (1965).
http://dx.doi.org/10.1063/1.1696442
17.
17. O. Yamamuro, I. Tsukushi, A. Lindqvist, S. Takahara, M. Ishikawa, and T. Matsuo, J. Phys. Chem. B 102, 1605 (1998).
http://dx.doi.org/10.1021/jp973439v
18.
18. M. Goldstein, J. Chem. Phys. 51, 3728 (1969).
http://dx.doi.org/10.1063/1.1672587
19.
19. X. Xia and P. G. Wolynes, PNAS 97, 2990 (2000).
http://dx.doi.org/10.1073/pnas.97.7.2990
20.
20. H. Tanaka, Phys. Rev. Lett. 90, 055701 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.055701
21.
21. C. A. Angell, in Relaxationsin Complex Systems, edited by K. L. Ngai and G. B. Wright (U.S. GPO, Washington, DC), p. 3.
22.
22. H. B. Ke, P. Wen, and W. H. Wang, arXiv:1111.4826v1;
23.
23. H. B. Ke, Z. F. Zhao, P. Wen, and W. H. Wang, Chin. Phys. Lett. 29, 046402 (2012).
http://dx.doi.org/10.1088/0256-307X/29/4/046402
24.
24. H. B. Ke, P. Wen, and W. H. Wang, Sci. in China Series G: Physics, Mechanics and Astronony (to be published).
25.
25. H. B. Ke, in the PhD thesis, CAS (2012).
26.
26. B. Chen, J. Xing, and J. I. Siepmann, J. Phys. Chem. 104, 2391 (2000).
http://dx.doi.org/10.1021/jp993687m
27.
27. E. W. Kellermann, Prog. Roy. Soc. A 178, 17 (1941).
http://dx.doi.org/10.1098/rspa.1941.0039
28.
28. E. O. Wollan, W. L. Davidson, and C. G. Shull, Phys. Rev. 75, 1348 (1949).
http://dx.doi.org/10.1103/PhysRev.75.1348
29.
29. J. Liu, C. G. Duan, M. M. Ossowski, W. N. Mei, R. W. Smith, and J. R. Hardy, Phys. Chem. Minericals 28, 258 (2001).
http://dx.doi.org/10.1016/S0254-0584(01)00448-5
30.
30. S. H. Chen, J. Teixeira, and R. Nicklow, Phys. Rev. A 26, 3477 (1982).
http://dx.doi.org/10.1103/PhysRevA.26.3477
31.
31. J. Teixeira, M.-C. Bellissent-Funel, S. H. Chen, and A. J. Dianoux, Phys. Rev. A 31, 1913 (1985).
http://dx.doi.org/10.1103/PhysRevA.31.1913
32.
32. C. J. Fecko, J. D. Eaves, J. J. Loparo, A. Tokmakoff, and P. L. Geissler, Science 301, 1698 (2003).
http://dx.doi.org/10.1126/science.1087251
33.
33. M. T. Cicerone, and M. D. Ediger, J. Chem. Phys. 104, 7210 (1996).
http://dx.doi.org/10.1063/1.471433
34.
34. D. V. Schroeder, An Introduction to Thermal Physics (Addison Wesley Longman, 2000).
35.
35. R. Bellissent and G. Tourand, J. Non-Cryst. Solids 35, 1221 (1980).
http://dx.doi.org/10.1016/0022-3093(80)90364-6
36.
36. B. Castaing and J. Souletie, J. Phys. I 1, 403 (1991).
http://dx.doi.org/10.1051/jp1:1991142
37.
37. C. Monthus and J. Bouchaud, J. Phys. A 29, 3847 (1996).
http://dx.doi.org/10.1088/0305-4470/29/14/012
38.
38. R. Kohlrausch, Ann. Phys. Chem. (Leipzig) 91, 179 (1874);
38.G. Willians and D. C. Watts, Trans, Faraday Soc. 66, 80 (1970).
http://dx.doi.org/10.1039/tf9706600080
39.
39. H. Sillescu, J. Non-Cryst. Solids 243, 81 (1999).
http://dx.doi.org/10.1016/S0022-3093(98)00831-X
40.
40. O. Kubaschewski and C. B. Alcock, Metallurgical thermochemistry (5th Edn, revised and enlarged), (Pergamon Press, Oxford, 1979), p. 336.
41.
41. A. Einstein, Ann. Phys., Lpz. 22, 180800 (1907).
42.
42. P. Debye, Ann. Phys., Lpz. 39, 789 (1912).
http://dx.doi.org/10.1002/andp.19123441404
43.
43. National Institute of Standards and Technology database.
44.
44. W. F. Giauque and J. W. Stout, J. Am. Chem. Soc. 58, 1144 (1936).
http://dx.doi.org/10.1021/ja01298a023
45.
45. P. Flubacher, A. J. Leadbetter, and J. A. Morrison, J. Chem. Phys. 33, 1751 (1960).
http://dx.doi.org/10.1063/1.1731497
46.
46. N. S. Osborne, H. F. Stimson, and D. C. Ginnings, J. Res. Natl. Bur. Stand. 23, 197 (1939).
http://dx.doi.org/10.6028/jres.023.008
47.
47. N. W. Ashcroft and N. D. Mermin, Solid State Physics (Holt, Rinehart and Winston, 1976).
48.
48. J. B. Clement and E. H. Quinnell, Phys. Rev. 92, 258 (1953).
http://dx.doi.org/10.1103/PhysRev.92.258
49.
49. A. Zajac, J. Chem. Phys. 29, 1324 (1958).
http://dx.doi.org/10.1063/1.1744716
50.
50. E. O. Wollan, W. L. Davidson, and C. G. Shull, Phys. Rev. 75, 1348 (1949).
http://dx.doi.org/10.1103/PhysRev.75.1348
51.
51. R. C. Dougherty and L. N. Howard, J. Chem. Phys. 109, 7379 (1998).
http://dx.doi.org/10.1063/1.477344
52.
52. Considering the O-H bond length in H2O molecule is 0.9584 Å and the H-O-H bond angel is 104.5°, the moment of inertia Ixx, Iyy, and Izz for H2O molecule are 1.09×10−47, 1.91×10−47 and 3.0×10−47 kgm2, respectively.
53.
53. A. L. Greer, Science 267, 1947 (1995).
http://dx.doi.org/10.1126/science.267.5206.1947
54.
54. P. Wen, D. Q. Zhao, M. X. Pan, W. H. Wang, Y. P. Huang, and M. L. Guo, Appl. Phys. Lett. 84, 2790 (2004).
http://dx.doi.org/10.1063/1.1699467
55.
55. Z. F. Zhao, P. Wen, C. H. Shek, and W. H. Wang, Phys. Rev. B 75, 174201 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.174201
56.
56. A. Meye, R. Busch, and H. Schober, Phys. Rev. Lett. 83, 5027 (1999).
http://dx.doi.org/10.1103/PhysRevLett.83.5027
57.
57. X. P. Tang, U. Geyer, R. Busch, W. L. Johnson, and Y. Wu, Nature 402, 160 (1999).
http://dx.doi.org/10.1038/45996
58.
58. N. Nishiyama, M. Horino, O. Haruyama, and A. Inoue, Appl. Phys. Lett. 76, 3914 (2000).
http://dx.doi.org/10.1063/1.126819
59.
59. D. Xu and W. L. Johnson, Phys. Rev. B 74, 024207 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.024207
60.
60. H. B. Ke, P. Wen, D. Q. Zhao, and W. H. Wang, Appl. Phys. Lett. 96, 251902 (2010).
http://dx.doi.org/10.1063/1.3455337
61.
61. D. Huang and G. B. McKenna, J. Chem. Phys. 114, 5621 (2001).
http://dx.doi.org/10.1063/1.1348029
62.
62. T. Komatsu and T. Noguchi, J. Am. Ceram. Soc. 80, 1327 (1997).
http://dx.doi.org/10.1111/j.1151-2916.1997.tb02988.x
63.
63. P. Wen, P. Harrowell, and C. A. Angell, J. Phys. Chem A 115, 6260 (2011).
http://dx.doi.org/10.1021/jp111835z
64.
64. L. M. Wang, C. A. Angell, and R. Richert, J. Chem. Phys. 125, 074505 (2006).
http://dx.doi.org/10.1063/1.2244551
65.
65. B. Wunderlich, J. Phys. Chem. 64, 1052 (1960).
http://dx.doi.org/10.1021/j100837a022
66.
66. N. Hirai and H. Eyring, J. Appl. Phys. 29, 810 (1958).
http://dx.doi.org/10.1063/1.1723290
67.
67. A. Tölle, Rep. Prog. Phys. 64, 1473 (2001).
http://dx.doi.org/10.1088/0034-4885/64/11/203
68.
68. I. L. Karle and L. O. Brockway, J. Am. Chem. Soc. 66, 1974 (1944).
http://dx.doi.org/10.1021/ja01239a057
69.
69. S. S. Chang and A. B. Bestul, J. Chem. Phys. 56, 503 (1972).
http://dx.doi.org/10.1063/1.1676895
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/4/10.1063/1.4773224
Loading
/content/aip/journal/adva/2/4/10.1063/1.4773224
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/2/4/10.1063/1.4773224
2012-12-20
2014-08-02

Abstract

Reconsidering the intrinsic connection between simple liquids and the glass transition, we attempt to understand them with an explicit liquid model. Liquids are defined to the mixture composed of tiny particles restricted in non-identical potential energy wells, where translational motions of tiny particles in statistical equilibrium, as well as vibrations and rotations, are distinguished. The liquid model offers an opportunity to build up a quantitative correlation between heat capacity and the basic motions appearing in liquids. Agreements between theoretical prediction and experimental data on heat capacities of typical simple liquids are reached. A serial of experimental data confirm that the glass transition originates from the falling out-of-equilibrium of the translational motions in liquids. The work might provide a novel and intuitive way to uncover a shady corner of the mysterious liquids and the glass transition.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/2/4/1.4773224.html;jsessionid=1g913uvmr9b85.x-aip-live-06?itemId=/content/aip/journal/adva/2/4/10.1063/1.4773224&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: The inquiry of liquids and glass transition by heat capacity
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/4/10.1063/1.4773224
10.1063/1.4773224
SEARCH_EXPAND_ITEM