1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Intrinsic superconductivity in ABA-stacked trilayer graphene
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/2/4/10.1063/1.4773226
1.
1. H. B. Heersche, P. J. Herrero, J. B. Oostinga, L. K. Versypen, and A. Morpurgo, Nature (London) 446, 56 (2007).
http://dx.doi.org/10.1038/nature05555
2.
2. C. W. J. Beenakker, Rev. Mod. Phys. 80, 1337 (2008), and reference therein.
http://dx.doi.org/10.1103/RevModPhys.80.1337
3.
3. M. Titov, and C. W. J. Beenakker, Phys. Rev. B 74, 041401R (2006);
http://dx.doi.org/10.1103/PhysRevB.74.041401
3.A. G. Moghaddam and M. Zareyan, Phys. Rev. B 74, 241403R (2006);
http://dx.doi.org/10.1103/PhysRevB.74.241403
3.A. M. Black-Schaffer and S. Doniach, Phys. Rev. B 78, 024504 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.024504
4.
4. A. R. Akhmerov and C. W. J. Beenakker, Phys. Rev. Lett. 98, 157003 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.157003
5.
5. J. Linder, T. Yokoyama, D. Huertas-Herno, and A. Sudb?, Phys. Rev. Lett. 100, 187004 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.187004
6.
6. D. Greenbaum, S. Das, G. Schwiete, and P. G. Silvestrov, Phys. Rev. B 75, 195437 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.195437
7.
7. B. Uchoa and A. H. Castro Neto, Phys. Rev. Lett. 98, 146801 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.146801
8.
8. W. Kohn, and J. M. Luttinger, Phys. Rev. Lett. 15, 524 (1965);
http://dx.doi.org/10.1103/PhysRevLett.15.524
8.J. Gonzalez, Phys. Rev. B 78, 205431 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.205431
9.
9. R. Nandkishore, L. S. Levitov, and A. V. Chubukov, Nat. Phys. 8, 158 (2012);
http://dx.doi.org/10.1038/nphys2208
9.W.-S. Wang, Y.-Y. Xiang, Q.-H. Wang, F. Wang, F. Yang, and D.-H. Lee, Phys. Rev. B. 85, 035414 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.035414
10.
10. A. M. Black-Schaffer, and S. Doniach, Phys. Rev. B 75, 134512 (2007);
http://dx.doi.org/10.1103/PhysRevB.75.134512
10.S. Pathak, V. B. Shenoy, and G. Baskaran, Phys. Rev. B 81, 085431 (2010);
http://dx.doi.org/10.1103/PhysRevB.81.085431
10.C. Honerkamp, Phys. Rev. Lett. 100, 146404 (2008);
http://dx.doi.org/10.1103/PhysRevLett.100.146404
10.Mariapia Marchi, Sam Azadi, and Sandro Sorella, Phys. Rev. Lett. 107, 086807 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.086807
11.
11. Q.-F. Sun, Z.-T. Jiang, Y. Yu, and X. C. Xie, Phys. Rev. B 84, 214501 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.214501
12.
12. Gianni Profeta, Matteo Calandra, and Francesco Mauri, Nature Phys. 8, 131134 (2012).
http://dx.doi.org/10.1038/nphys2181
13.
13. N. B. Kopnin, and E. B. Sonin, Phys. Rev. Lett. 100, 246808 (2008);
http://dx.doi.org/10.1103/PhysRevLett.100.246808
13.M. Einenkel and K. B. Efetov, Phys. Rev. B 84, 214508 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.214508
14.
14. A. Kumar et al., Phys. Rev. Lett. 107, 126806 (2011);
http://dx.doi.org/10.1103/PhysRevLett.107.126806
14.T. Taychatanapat et al., Nat. Phys. 7, 621 (2011);
http://dx.doi.org/10.1038/nphys2008
14.C. H. Liu et al., Nat. Phys. 7, 944 (2011);
http://dx.doi.org/10.1038/nphys2085
14.Y. Zhang et al., Nat. Phys. 7, 953 (2011);
http://dx.doi.org/10.1038/nphys2104
14.W. Bao et al., Nat. Phys. 7, 948 (2011);
http://dx.doi.org/10.1038/nphys2103
14.E. A. Henriksen, D. Nandi, and J. P. Eisenstein, Phys. Rev. X 2, 011004 (2012).
http://dx.doi.org/10.1103/PhysRevX.2.011004
15.
15. Haiwen Liu, Hua Jiang, X. C. Xie, and Qing-feng Sun, Phys. Rev. B 86, 085441 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.085441
16.
16. F. Guinea, A. H. Castro Neto, and N. M. R. Peres, Phys. Rev. B 73, 245426 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.245426
17.
17. S. Piscanec, M. Lazzeri, Francesco Mauri, A. C. Ferrari, and J. Robertson, Phys. Rev. Lett. 93, 185503 (2004);
http://dx.doi.org/10.1103/PhysRevLett.93.185503
17.Dmitri K. Efetov and Philip Kim, Phys. Rev. Lett. 105, 256805 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.256805
18.
18. G. Savini, A. C. Ferrari, and Feliciano Giustino, Phys. Rev. Lett. 105, 037002 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.037002
19.
19. R. van Gelderen, L.-K. Lim, and C. M. Smith, Phys. Rev. B 84, 155446 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.155446
20.
20. R. Micnas, J. Ranninger, and S. Robaszkiewicz, Rev. Mod. Phys. 62, 113 (1990), and references therein.
http://dx.doi.org/10.1103/RevModPhys.62.113
21.
21. V. M. Loktev and V. Turkowski, Phys. Rev. B 79, 233402 (2009);
http://dx.doi.org/10.1103/PhysRevB.79.233402
21.P. M. Chaikin and T. C. Lubensky, Principles of Condensed Matter Physics (Cambridge University Press, Cambridge, England, 1995).
22.
22. H. Suhl, B. T. Matthias, and L. R. Walker, Phys. Rev. Lett. 3, 552 (1959);
http://dx.doi.org/10.1103/PhysRevLett.3.552
22.V. G. Kogan, C. Martin, and R. Prozorov, Phys. Rev. B 80, 014507 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.014507
23.
23. Eros Mariani and Felix von Oppen, Phys. Rev. Lett. 100, 076801 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.076801
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/4/10.1063/1.4773226
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Schematic lattice structure of ABC-stacked trilayer Graphene.

Image of FIG. 2.

Click to view

FIG. 2.

Band structure of ABA-stacked Trilayer Graphene. E F denotes the Fermi energy and ξ m denotes the Debye frequency.

Image of FIG. 3.

Click to view

FIG. 3.

Normalized critical temperature as a function of dimensionless coupling strength λ for different doping conditions.

Image of FIG. 4.

Click to view

FIG. 4.

The ratio of two superconducting gap as a function of dimensionless coupling strength λ for different doping conditions. The inter-band coupling are neglected.

Image of FIG. 5.

Click to view

FIG. 5.

The normalized superconducting gap as a function of normalized temperature . The dashed(solid) line denote the superconducting gap with(without) inter-band coupling.

Image of FIG. 6.

Click to view

FIG. 6.

The superconducting transition temperature T c as a function of normalized Fermi energy .

Loading

Article metrics loading...

/content/aip/journal/adva/2/4/10.1063/1.4773226
2012-12-20
2014-04-21

Abstract

We study the phonon-mediated superconductivity in light doped ABA-stacked trilayergraphene system by means of two theoreticalmodels. We find superconducting transition temperature T C can be greatly enlarged by tuning the Fermi energy away from neutral point. Utilizing realistic parameters, we find T c is approximately 1 K even under weak doping condition E F = 0.1 eV. Specifically, we give out the analytical expression for superconductivity gap △ and superconducting transition temperature T c for negative-U Hubbard model. Further, we consider the thermal fluctuation and calculate the Berezinskii-Kosterlitz-Thouless critical temperature T BKT . Besides, we consider a two-band BCSmodel in comparision with the negative-U Hubbard model. The results for both models are qualitatively consistent. Our study provides a promising possibility for realizing intrinsic superconductivity in multilayergraphene systems.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/2/4/1.4773226.html;jsessionid=141h4ebc2gqg5.x-aip-live-01?itemId=/content/aip/journal/adva/2/4/10.1063/1.4773226&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Intrinsic superconductivity in ABA-stacked trilayer graphene
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/4/10.1063/1.4773226
10.1063/1.4773226
SEARCH_EXPAND_ITEM