Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/2/4/10.1063/1.4773318
1.
1. B. H. Park, B. S. Kang, S. D. Bu, T. W. Noh, J. Lee, and W. Jo, Nature 401, 682 (1999).
http://dx.doi.org/10.1038/44352
2.
2. H. N. Lee, D. Hesse, N. Zakharov, and U. Gösele, Science 296, 2006 (2002).
http://dx.doi.org/10.1126/science.1069958
3.
3. P. D. Araujo, C. A. Cuchiaro, J. D. McMillan, L. D., M. C. Scott, and J. F. Scott, Nature 374, 627 (1995).
http://dx.doi.org/10.1038/374627a0
4.
4. M. D. Maeder, D. Damjanovic, and N. Setier, J. Electroceram. 13, 385 (2004).
http://dx.doi.org/10.1007/s10832-004-5130-y
5.
5. A. K. Tagantsev, V. O. Sherman, K. F. Astafiev, J. Venkatesh, and N. Setter, J. Electroceram. 11, 5 (2003).
http://dx.doi.org/10.1023/B:JECR.0000015661.81386.e6
6.
6. J. Kreisel, M. Alexe, and P. A. Thomas, Nature 11, 260 (2012).
http://dx.doi.org/10.1038/nmat3282
7.
7. S. C. Hwang, C. S. Lynch, and R. M. McMeeking, Acta Metall. Mater. 43(5), 2073 (1995).
http://dx.doi.org/10.1016/0956-7151(94)00379-V
8.
8. N. A. Spaldin and M. Fiebig, Science 309(5733), 391 (2005).
http://dx.doi.org/10.1126/science.1113357
9.
9. H. Lu, C. W. Bark, D. E. Ojos, J. Alcala, C. B. Eom, G. Catalan, and A. Gruverman, Science 336, 59 (2012).
http://dx.doi.org/10.1126/science.1218693
10.
10. X. S. Wang, C. N. Xu, H. Yamada, K. Nishikubo, and X. G. Zheng, Adv. Mater. 17, 1254 (2005).
http://dx.doi.org/10.1002/adma.200401406
11.
11. J. C. Zhang, X. S. Wang, X. Yao, C. N. Xu, and H. Yamada, Appl. Phys. Express 3(2) 022601 (2010).
http://dx.doi.org/10.1143/APEX.3.022601
12.
12. J. C. Zhang, X. S. Wang, X. Yao, C. N. Xu, and H. Yamada, J. Electrochem. Soc. 157(12) G269 (2010).
http://dx.doi.org/10.1149/1.3496667
13.
13. H. Q. Sun, D. F. Peng, X. S. Wang, M. M. Tang, Q. W. Zhang, and X. Yao, J. Appl. Phys. 111, 046102 (2012).
http://dx.doi.org/10.1063/1.3686193
14.
14. H. Q. Sun, D. F. Peng, X. S. Wang, M. M. Tang, Q. W. Zhang, and X. Yao, J. Appl. Phys. 110, 016102 (2011).
http://dx.doi.org/10.1063/1.3606425
15.
15. D. F. Peng, H. Q. Sun, X. S. Wang, J. C. Zhang, M. M. Tang, and X. Yao, J. Alloys Compd. 511(1), 159 (2012).
http://dx.doi.org/10.1016/j.jallcom.2011.09.019
16.
16. D. F. Peng, H. Q. Sun, X. S. Wang, J. C. Zhang, M. M. Tang, and X. Yao, Mater. Sci. Eng., B 176(18), 1513 (2011).
http://dx.doi.org/10.1016/j.mseb.2011.09.009
17.
17. B. Aurivillius, Ark. Kemi. 1, 499 (1949).
18.
18. J. Q. Hu, Y. Yu, H. Guo, Z. W. Chen, A. Q. Li, X. M. Feng, B. M. Xi, and G. Q. Hu, J. Mater. Chem. 21, 5352 (2011).
http://dx.doi.org/10.1039/c0jm03010d
19.
19. D. Y. Guo, M. Y. Li, J. Wang, J. Liu, and B. F. Yu, Appl. Phys. Lett. 91, 232905 (2007).
http://dx.doi.org/10.1063/1.2821836
20.
20. H. C. Du, S. Wohlrab, and S. Kaskel, J. Phys. Chem. C 111, 11095 (2007).
http://dx.doi.org/10.1021/jp070045n
21.
21. Q. Y. Zhang and X. Y. Huang, Prog. Mater. Sci. 55(5), 353 (2010).
http://dx.doi.org/10.1016/j.pmatsci.2009.10.001
22.
22. T. Trupke, M. A. Green, and P. Würfel, J. Appl. Phys. 92(7), 4117 (2002).
http://dx.doi.org/10.1063/1.1505677
23.
23. H. Q. Wang, M. Batentschuk, A. Osvet, L. Pinna, and C. J. Brabec, Adv. Mater., 23 2675 (2011).
http://dx.doi.org/10.1002/adma.201100511
24.
24. L. H. Fischer, G. S. Harms, and O. S. Wolfbeis, Angew. Chem. Int. Ed. 50(20), 4546 (2011).
http://dx.doi.org/10.1002/anie.201006835
25.
25. F. Wang, Y. Han, C. S. Lim, Y. H. Lu, J. Wang, J. Xu, H. Y. Chen, C. Zhang, M. H , Hong, and X. G. Liu, Nature 463, 1061 (2010).
http://dx.doi.org/10.1038/nature08777
26.
26. F. Wang, R. Deng, J. Wang, Q. X. Wang, Y. Han, H. M. Zhu, and X. Y. Chen, Nature 10, 922 (2011).
http://dx.doi.org/10.1038/nmat3150
27.
27. X. Wang, X. G. Kong, Y. Yu, Y. J. Sun, and H. Zhang, J. Phys. Chem. C 111(41), 15119 (2007).
http://dx.doi.org/10.1021/jp0686689
28.
28. H. H. Wang, C. K. Duan, and P. A. Tanner, J. Phys. Chem. C 112(42), 16651 (2008).
http://dx.doi.org/10.1021/jp8046505
29.
29. Q. , F. Y. Guo, L. Sun, A. H. Li, and L. C. Zhao, J. Phys. Chem. C 112(8), 2836 (2008).
http://dx.doi.org/10.1021/jp077498c
30.
30. K. Kazuo, Y. Shiro, S. Haruki, and M. Akira, Appl. Phys. Lett. 67(23), 3423 (1995).
http://dx.doi.org/10.1063/1.115267
31.
31. Bin Dong, Z. A. Li, B. S. Cao, N. S. Yu, and M. T. Sun, Optics Commun. 284(10–11), 2528 (2011).
http://dx.doi.org/10.1016/j.optcom.2011.01.019
32.
32. Q. L. Dai, H. W. Song, X. G. Ren, S. Z. Lu, G. H. Pan, X. Bai, Bi. Dong, R. F. Qin, X. S. Qu, and H. Zhang, J. Phys. Chem. C 112(49), 19694 (2008).
http://dx.doi.org/10.1021/jp805587q
33.
33. J. H. Chung, J. H. Ryu, S. W. Mhin, K. M. Kim, and K. B. Shim, J. Mater. Chem. 22, 3997 (2012).
http://dx.doi.org/10.1039/c2jm15332g
34.
34. R. Martin-Rodriguez, R. Valiente, S. Polizzi, M. Bettinelli, A. Speghini, and F. Piccinelli, J. Phys. Chem. C 113(28), 12195 (2009).
http://dx.doi.org/10.1021/jp901711g
35.
35. V. Mahalingam, F. Mangiarini, F. Vetrone, V. Venkatramu, M. Bettinelli, A. Speghini, and J. A. Capobianco, J. Phys. Chem. C 112(46), 17745 (2008).
http://dx.doi.org/10.1021/jp8076479
36.
36. B. Dong, B. S. Cao, Y. Y. He, Z. Liu, Z. P. Li, and Z. Q. Feng, Adv. Mater. 24(15), 1987 (2012).
http://dx.doi.org/10.1002/adma.201200431
37.
37. I. Etchart, I. Hernández, A. Huignard, M. Bérard, W. P. Gillin, R. J. Curry, and A. K. Cheetham, J. Mater. Chem. 21, 13874 (2011).
http://dx.doi.org/10.1039/c0jm01652g
38.
38. I. Etchart, A. Huignard, M. Bérard, M. N. Nordin, I. Hernández, R. J. Curry, W. P. Gillin, and A. K. Cheetham, J. Mater. Chem. 20, 3989 (2010).
http://dx.doi.org/10.1039/c000127a
39.
39. P. J. Dereń, R. Mahiou, R. Pązik, K. Lemanski, W. Stręk, and P. Boutinaud, J. Lumin. 128, 797 (2008).
http://dx.doi.org/10.1016/j.jlumin.2007.11.057
40.
40. H. Guo, N. Dong, M. Yin, W. P. Zhang, L. R. Lou, and S. D. Xia, J. Alloys Compd. 415, 280 (2006).
http://dx.doi.org/10.1016/j.jallcom.2005.08.008
41.
41. Y. Zhang, J. H. Hao, C. L. Mak, and X. H. Wei, Opt. Express 19(3), 1824 (2011).
http://dx.doi.org/10.1364/OE.19.001824
42.
42. T. C. Huang and W. F. Hsieh, J. Fluoresc. 19, 511 (2009).
http://dx.doi.org/10.1007/s10895-008-0440-0
43.
43. H. Naruke and T. Yamase, J. Alloys Compd. 391, 302 (2005).
http://dx.doi.org/10.1016/j.jallcom.2004.08.072
44.
44. R. Balakrishnaiah, D. W. Kim, S. S. Yi, K. D. Kim, S. H. Kim, K. Jang, H. S. Lee, and H. Jeong, Thin Solid Films 517, 4138 (2009).
http://dx.doi.org/10.1016/j.tsf.2009.02.035
45.
45. G. J. Ding, F. Gao, G. H. Wu, and D. H. Bao, J. Appl. Phys. 109, 123101 (2011).
http://dx.doi.org/10.1063/1.3596597
46.
46. F. Gao, G. H. Wu, H. Zhou, and D. H. Bao, J. Appl. Phys. 106(12), 126104 (2009.
http://dx.doi.org/10.1063/1.3273477
47.
47. F. Gao, G. J. Ding, H. Zhou, G. H. Wu, N. Qin, and D. H. Bao, J. Appl. Phys. 109(4), 043106 (2011).
http://dx.doi.org/10.1063/1.3549836
48.
48. F. Gao, G. J. Ding, H. Zhou, G. H. Wu, N. Qin, and D. H. Bao, J. Electrochem. Soc. 158(5), G128 (2011).
http://dx.doi.org/10.1149/1.3562940
49.
49. S. Kojima, R. Imaizumi, S. Hamazaki, and M. Takashige, Jpn. J. Appl. Phys. 33, 5559 (1994).
http://dx.doi.org/10.1143/JJAP.33.5559
50.
50. M. Demartin, D. Damjanovic, C. Voisard, and N. Setter, J. Mater. Res. 17, 1376 (2002).
http://dx.doi.org/10.1557/JMR.2002.0205
51.
51. G. R. Li, L. Y. Zheng, Q. R. Yin, B. Jiang, and W. W. Cao, J. Appl. Phys. 98, 064108 (2005).
http://dx.doi.org/10.1063/1.2058174
52.
52. A. Tanwar, K. Sreenivas, and V. Gupta, J. Appl. Phys. 105, 084105 (2009).
http://dx.doi.org/10.1063/1.3106533
53.
53. W. Wang, J. Zhu, X. Mao, and X. Chen, J. Phys. D: Appl. Phys. 39, 370 (2006).
http://dx.doi.org/10.1088/0022-3727/39/2/019
54.
54. J. Zhu, X. B. Chen, W. P. Lu, X. Y. Mao, and R. Hui, Appl. Phys. Lett. 83(9), 1818 (2003).
http://dx.doi.org/10.1063/1.1606496
55.
55. R. Z. Hou, X. M. Chen, and Y. W. Zeng, J. Am. Ceram. Soc. 89(9), 2839 (2006).
56.
56. T. Sivakumar and M. Itoh, Chem. Mater. 23, 129 (2011).
http://dx.doi.org/10.1021/cm102800x
57.
57. T. Sivakumar and M. Itoh, J. Mater. Chem. 21, 10865 (2011).
http://dx.doi.org/10.1039/c1jm11297j
58.
58. Y , Yang, L. Jin, X. Y. Ma, and D. R. Yang, Appl. Phys. Lett. 100(3), 031103 (2012).
http://dx.doi.org/10.1063/1.3678026
59.
59. S. Yerci, R. Li, and L. D. Negro, Appl. Phys. Lett. 97, 081109 (2010).
http://dx.doi.org/10.1063/1.3483771
60.
60. Y. H. Wang and J. Ohwaki, Appl. Phys. Lett. 63(24), 3268 (1993).
http://dx.doi.org/10.1063/1.110170
61.
61. Y. Noguchi and M. Miyayama, Lead-Free Piezoelectrics 4, 405 (2012).
http://dx.doi.org/10.1007/978-1-4419-9598-8
62.
62. J. H. Hao, Y. Zhang, and X. H. Wei, Angew. Chem. 123, 7008 (2011).
http://dx.doi.org/10.1002/ange.201101374
63.
63. G. Y. Chen, H. C. Liu, H. J. Liang, G. Somesfalean, and Z. G. Zhang, J. Phys. Chem. C 112(31), 12030 (2008).
http://dx.doi.org/10.1021/jp804064g
64.
64. S. Tirth and K. Basude, J. Appl. Phys. 105(1), 013102 (2009).
http://dx.doi.org/10.1063/1.3054918
65.
65. G. Tian, Z. J. Gu, L. J. Zhou, W. Y. Yin, X. X. Liu, L. Yan, S. Jin, W. L. Ren, G. M. Xing, S. J. Li, and Y. L. Zhao, Adv. Mater. 24(9), 1226 (2012).
http://dx.doi.org/10.1002/adma.201104741
66.
66. Q. M Huang, J. C. Yu, E. Ma, and K. M. Lin, J. Phys. Chem. C 114(10), 4719 (2010).
http://dx.doi.org/10.1021/jp908645h
67.
67. X. S. Wang and H. S. Ishiwara, Appl. Phys. Lett. 82(15), l 2479 (2003).
http://dx.doi.org/10.1063/1.1566087
68.
68. I. Hiroshi and M. Masaru, Appl. Phys. Lett. 79(2), 251 (2001).
http://dx.doi.org/10.1063/1.1384480
69.
69. D. Y. Suárez, I. M. Reaney, and W. E. Lee, J. Mater. Res. 16, 3139 (2001).
http://dx.doi.org/10.1557/JMR.2001.0433
70.
70. Y. Shimakawa, Y. Kubo, Y. Nakagawa, S. Goto, T. Kamiyama, H. Asano, and F. Izumi, Phys. Rev. B 61, 6559 (2001).
http://dx.doi.org/10.1103/PhysRevB.61.6559
71.
71. Y. Shimakawa, Y. Kubo, Y. Nakagawa, T. Kamiyama, H. Asano, and F. Izumi, Appl. Phys. Lett. 74, 1904 (1999).
http://dx.doi.org/10.1063/1.123708
72.
72. B. Mamatha, A. R. James, and P. Sarah, Physica B 405, 4772 (2010).
http://dx.doi.org/10.1016/j.physb.2010.08.074
73.
73. J. Müller, U. Schröder, T. S. Böscke, I. Müller, U. Böttger, L. Wilde, J. Sundqvist, M. Lemberger, P. Kücher, T. Mikolajick, and L. Frey, J. Appl. Phys. 110, 114113 (2011).
http://dx.doi.org/10.1063/1.3667205
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/4/10.1063/1.4773318
Loading
/content/aip/journal/adva/2/4/10.1063/1.4773318
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/2/4/10.1063/1.4773318
2012-12-19
2016-09-28

Abstract

Er3+doped SrBi4Ti4O15 (SBT) bismuth layered-structure ferroelectric ceramics were synthesized by the traditional solid-state method, and their upconversion photoluminescent (UC) properties were investigated as a function of Er3+ concentration and incident pump power. Green (555 nm) and red (670 nm) emission bands were obtained under 980 nm excitation at room temperature, which corresponded to the radiative transitions from 4S3/2, and 4F9/2 to 4I15/2, respectively. The emission color of the samples could be changed with moderating the doping concentrations. The dependence of UC intensity on pumping power indicated a two-photon emission process. Studies on dielectric properties indicated that the introduction of Er increased the ferroelectric-paraelectric phase transition temperature (Tc) of SBT, thus making this ceramic suitable for piezoelectric sensor applications at higher temperatures. Piezoelectric measurement showed that the doped SBT had a relative higher piezoelectric constant d33 compared with the non-doped ceramics. The thermal annealing behaviors of the doped sample revealed a stable piezoelectric property. The doped SBT showed bright UC emission while simultaneously having increased Tc and d33. As a multifunctional material, Er doped SBT ferroelectric oxide showed great potential in application of sensor, future optical-electro integration and coupling devices.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/2/4/1.4773318.html;jsessionid=N1Nt-1quGdbdPVJKiLkPrdSv.x-aip-live-02?itemId=/content/aip/journal/adva/2/4/10.1063/1.4773318&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/2/4/10.1063/1.4773318&pageURL=http://scitation.aip.org/content/aip/journal/adva/2/4/10.1063/1.4773318'
Right1,Right2,Right3,