Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. A. Braun, G. Korn, X. Liu, D. Du, J. Squier, and G. Mourou, Opt. Lett. 20, 73 (1995).
2. P. Rairoux, H. Schillinger, S. Niedermeier, M. Rodriguez, F. Ronneberger, R. Sauerbrey, B. Stein, D. Waite, C. Wedekind, H. Wille, L. Wöste, and C. Ziener, Appl. Phys. B 71, 573 (2000).
3. W. Yu, M. Y. Yu, J. Zhang, L. J. Qian, X. Yuan, P. X. Lu, R. X. Li, Z. M. Sheng, J. R. Liu, and Z. Z. Xu, Phys. Plasmas 11, 5360 (2004)
4. B. Qiao, C. H. Lai, C. T. Zhou, X. T. He, and X. G. Wang, Appl. Phys. Lett. 91, 221114 (2007).
5. J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J. P. Wolf, and L. Wöste, Science 301, 61 (2003).
6. L. Bergé and S. Skupin, Phys. Rev. Lett. 100, 113902 (2008).
7. J. Kasparian, J. Wolf, Y. B. André, G. Méchain, G. Méjean, B. Prade, P. Rohwetter, E. Salmon, K. Stelmaszczyk, J. Yu, A. Mysyrowicz, R. Sauerbrey, L. Woeste, and J. P. Wolf, Opt. Express 16, 466 (2008).
8. V. Loriot, E. Hertz, O. Faucher, and B. Lavorel, Opt. Express 17, 13429 (2009).
9. V. Loriot, P. Béjot, W. Ettoumi, Y. Petit, J. Kasparian, S. Henin, E. Hertz, B. Lavorel, O. Faucher, and J. P. Wolf, Laser Physics 21, 1319 (2011).
10. P. Béjot, J. Kasparian, S. Henin, V. Loriot, T. Vieillard, E. Hertz, O. Faucher, B. Lavorel, and J. P. Wolf, Phys. Rev. Lett. 104, 103903 (2010).
11. P. Polynkin, M. Kolesik, E. M. Wright, and J. V. Moloney, Phys. Rev. Lett. 106, 153902 (2011).
12. G. Fibich and B. Ilan, Opt. Lett. 26, 840 (2001).
13. L. Cicchitelli and H. Hora, Phys. Rev. A 41, 3727 (1990).
14. D. Novoa, H. Michinel, and D. Tommasini, Phys. Rev. Lett. 105, 203904 (2010).
15. C. T. Zhou, X. T. He, and S. G. Chen, Phys. Rev. A 46, 2277 (1992);
15.C. T. Zhou, X. T. He, and S. G. Chen, Phys. Rev. E 50, 4136 (1994).
16. A. J. Lichtenberg and M. A. Lieberman, Regular and Stochastic Motion (Springer-Verlag, New York, 1983).
17. C. Sulem and P. L. Sulem, The Nonliear Schrödinger Equation: Self-Focusing and Wave Collapse (Springer, New York, 1999), pp. 2737.
18. B. Qiao, C. H. Lai, C. T. Zhou, X. T. He, X. G. Wang, and M. Y. Yu, Phys. Plasmas 14, 112301 (2007).
19. T. Höuser, W. Scheid, and H. Hora, J. Opt. Soc. Am. B 5, 2029 (1988)
20. V. E. Zakharov and A. B. Shabat, Zh. Eksp. Teor. Fiz. 61, 118 (1972)
20.V. E. Zakharov and A. B. Shabat, [Sov. Phys. JETP 34, 62 (1972)].
21. F. Osman, R. Castillo, and H. Hora, J. Plasmas Phys. 61, 263 (1999).
22. F. Osman, R. Castillo, and H. Hora, Laser and Particle beams. 18, 73 (2000).
23. Y. Tan and J. M. Ma, Phys. Rev. E 57, 381 (1998);
23.Y. Tan and J. M. Ma, J. Phys. A 33, 9119 (2000).
24. X. L. Liu, X. Lu, X. Liu, L. B. Feng, J. L. Ma, Y. T. Li, L. M. Chen, Q. L. Dong, W. M. Wang, Z. H. Wang, Z. Y. Wei, Z. M. Sheng, and J. Zhang, Opt Lett. 36, 3900 (2011)
25. C. Ren and W. B. Mori, Phys. Plasmas 8, 3118 (2001).
26. H. T. Moon, Phys. Rev. Lett. 64, 412 (1990).
27. C. T. Zhou and X. T. He, Phys. Rev. E 49, 4417 (1994).
28. T. T. Xi, X. Lu, and J. Zhang, Phys. Rev. Lett. 96, 025003 (2006).
29. S. V. Vladimirov, M. Y. Yu, and V. N. Tsytovich, Phys. Reps. 241, 1 (1994).
30. S. Y. Chen, G. S. Sarkisov, A. Maksimchuk, R. Wagner, and D. Umstadter, Phys. Rev. Lett. 80, 2610 (1998).

Data & Media loading...


Article metrics loading...



Propagation characteristic of femtosecond terawatt laser pulses in N2 gas with higher-order Kerr effect (HOKE) is investigated. Theoreticalanalysis shows that HOKE acting as Hamiltonian perturbation can destroy the coherent structure of a laser field and result in the appearance of incoherent patterns. Numerical simulations show that in this case two different types of complex structures can appear. It is found that the high-order focusing terms in HOKE can cause continuous phase shift and off-axis evolution of the laser fields when irregular homoclinic orbit crossings of the field in phase space take place. As the laser propagates, small-scale spatial structures rapidly appear and the evolution of the laser field becomes chaotic. The two complex patterns can switch between each other quasi-periodically. Numerical results show that the two complex patterns are associated with the stochastic evolution of the energy contained in the higher-order shorter-wavelength Fourier modes. Such complex patterns, associated with small-scale filaments, may be typical for laser propagation in a HOKE medium.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd