1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Propagation of femtosecond terawatt laser pulses in N2 gas including higher-order Kerr effects
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/2/4/10.1063/1.4773324
1.
1. A. Braun, G. Korn, X. Liu, D. Du, J. Squier, and G. Mourou, Opt. Lett. 20, 73 (1995).
http://dx.doi.org/10.1364/OL.20.000073
2.
2. P. Rairoux, H. Schillinger, S. Niedermeier, M. Rodriguez, F. Ronneberger, R. Sauerbrey, B. Stein, D. Waite, C. Wedekind, H. Wille, L. Wöste, and C. Ziener, Appl. Phys. B 71, 573 (2000).
http://dx.doi.org/10.1007/s003400000375
3.
3. W. Yu, M. Y. Yu, J. Zhang, L. J. Qian, X. Yuan, P. X. Lu, R. X. Li, Z. M. Sheng, J. R. Liu, and Z. Z. Xu, Phys. Plasmas 11, 5360 (2004)
http://dx.doi.org/10.1063/1.1803841
4.
4. B. Qiao, C. H. Lai, C. T. Zhou, X. T. He, and X. G. Wang, Appl. Phys. Lett. 91, 221114 (2007).
http://dx.doi.org/10.1063/1.2819611
5.
5. J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J. P. Wolf, and L. Wöste, Science 301, 61 (2003).
http://dx.doi.org/10.1126/science.1085020
6.
6. L. Bergé and S. Skupin, Phys. Rev. Lett. 100, 113902 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.113902
7.
7. J. Kasparian, J. Wolf, Y. B. André, G. Méchain, G. Méjean, B. Prade, P. Rohwetter, E. Salmon, K. Stelmaszczyk, J. Yu, A. Mysyrowicz, R. Sauerbrey, L. Woeste, and J. P. Wolf, Opt. Express 16, 466 (2008).
http://dx.doi.org/10.1364/OE.16.000466
8.
8. V. Loriot, E. Hertz, O. Faucher, and B. Lavorel, Opt. Express 17, 13429 (2009).
http://dx.doi.org/10.1364/OE.17.013429
9.
9. V. Loriot, P. Béjot, W. Ettoumi, Y. Petit, J. Kasparian, S. Henin, E. Hertz, B. Lavorel, O. Faucher, and J. P. Wolf, Laser Physics 21, 1319 (2011).
http://dx.doi.org/10.1134/S1054660X11130196
10.
10. P. Béjot, J. Kasparian, S. Henin, V. Loriot, T. Vieillard, E. Hertz, O. Faucher, B. Lavorel, and J. P. Wolf, Phys. Rev. Lett. 104, 103903 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.103903
11.
11. P. Polynkin, M. Kolesik, E. M. Wright, and J. V. Moloney, Phys. Rev. Lett. 106, 153902 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.153902
12.
12. G. Fibich and B. Ilan, Opt. Lett. 26, 840 (2001).
http://dx.doi.org/10.1364/OL.26.000840
13.
13. L. Cicchitelli and H. Hora, Phys. Rev. A 41, 3727 (1990).
http://dx.doi.org/10.1103/PhysRevA.41.3727
14.
14. D. Novoa, H. Michinel, and D. Tommasini, Phys. Rev. Lett. 105, 203904 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.203904
15.
15. C. T. Zhou, X. T. He, and S. G. Chen, Phys. Rev. A 46, 2277 (1992);
http://dx.doi.org/10.1103/PhysRevA.46.2277
15.C. T. Zhou, X. T. He, and S. G. Chen, Phys. Rev. E 50, 4136 (1994).
http://dx.doi.org/10.1103/PhysRevE.50.4136
16.
16. A. J. Lichtenberg and M. A. Lieberman, Regular and Stochastic Motion (Springer-Verlag, New York, 1983).
17.
17. C. Sulem and P. L. Sulem, The Nonliear Schrödinger Equation: Self-Focusing and Wave Collapse (Springer, New York, 1999), pp. 2737.
18.
18. B. Qiao, C. H. Lai, C. T. Zhou, X. T. He, X. G. Wang, and M. Y. Yu, Phys. Plasmas 14, 112301 (2007).
http://dx.doi.org/10.1063/1.2803769
19.
19. T. Höuser, W. Scheid, and H. Hora, J. Opt. Soc. Am. B 5, 2029 (1988)
http://dx.doi.org/10.1364/JOSAB.5.002029
20.
20. V. E. Zakharov and A. B. Shabat, Zh. Eksp. Teor. Fiz. 61, 118 (1972)
20.V. E. Zakharov and A. B. Shabat, [Sov. Phys. JETP 34, 62 (1972)].
21.
21. F. Osman, R. Castillo, and H. Hora, J. Plasmas Phys. 61, 263 (1999).
http://dx.doi.org/10.1017/S0022377898007417
22.
22. F. Osman, R. Castillo, and H. Hora, Laser and Particle beams. 18, 73 (2000).
http://dx.doi.org/10.1017/S026303460018108X
23.
23. Y. Tan and J. M. Ma, Phys. Rev. E 57, 381 (1998);
http://dx.doi.org/10.1103/PhysRevE.57.381
23.Y. Tan and J. M. Ma, J. Phys. A 33, 9119 (2000).
http://dx.doi.org/10.1088/0305-4470/33/49/307
24.
24. X. L. Liu, X. Lu, X. Liu, L. B. Feng, J. L. Ma, Y. T. Li, L. M. Chen, Q. L. Dong, W. M. Wang, Z. H. Wang, Z. Y. Wei, Z. M. Sheng, and J. Zhang, Opt Lett. 36, 3900 (2011)
http://dx.doi.org/10.1364/OL.36.003900
25.
25. C. Ren and W. B. Mori, Phys. Plasmas 8, 3118 (2001).
http://dx.doi.org/10.1063/1.1373419
26.
26. H. T. Moon, Phys. Rev. Lett. 64, 412 (1990).
http://dx.doi.org/10.1103/PhysRevLett.64.412
27.
27. C. T. Zhou and X. T. He, Phys. Rev. E 49, 4417 (1994).
http://dx.doi.org/10.1103/PhysRevE.49.4417
28.
28. T. T. Xi, X. Lu, and J. Zhang, Phys. Rev. Lett. 96, 025003 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.025003
29.
29. S. V. Vladimirov, M. Y. Yu, and V. N. Tsytovich, Phys. Reps. 241, 1 (1994).
http://dx.doi.org/10.1016/0370-1573(94)90134-1
30.
30. S. Y. Chen, G. S. Sarkisov, A. Maksimchuk, R. Wagner, and D. Umstadter, Phys. Rev. Lett. 80, 2610 (1998).
http://dx.doi.org/10.1103/PhysRevLett.80.2610
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/4/10.1063/1.4773324
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) The pseudopotential function V(G) in Eq. (3), where γ2 = 30 is taken. (b) Values of HOKE relative to KF effect (solid line) and most unstable growth rate of modulational instability (dash line) at different intensity of input laser (I 0). Asterisk symbols mark the points with I 0 of 50I cr , 150I cr , 1500I cr , 2000I cr , 3000I cr , 3700I cr , respectively, where .

Image of FIG. 2.

Click to view

FIG. 2.

Pattern structures of laser fields [(a)-(c) and (g)-(i)] and corresponding phase space [(d)-(f) and (j)-(l)] with the same I 0 as given in Fig. 1(b).

Image of FIG. 3.

Click to view

FIG. 3.

Comparison of the two different complicated spatial patterns with I 0 respectively of 2000I cr [(a)-(c)] and 3700I cr [(d)-(f)]. (a) and (d) are evolutions of laser field at x = 0. (b) and (e) are the contours of laser intensity I(x, z). (c) and (f) are the profile of laser intensity at z = 0 and 26.4 m.

Image of FIG. 4.

Click to view

FIG. 4.

The energy evolution in the Fourier modes with I 0 respectively of 50I cr (a), 150I cr (b), 1500I cr (c), 2000I cr (d), 3700I cr (e).

Loading

Article metrics loading...

/content/aip/journal/adva/2/4/10.1063/1.4773324
2012-12-20
2014-04-24

Abstract

Propagation characteristic of femtosecond terawatt laser pulses in N2 gas with higher-order Kerr effect (HOKE) is investigated. Theoreticalanalysis shows that HOKE acting as Hamiltonian perturbation can destroy the coherent structure of a laser field and result in the appearance of incoherent patterns. Numerical simulations show that in this case two different types of complex structures can appear. It is found that the high-order focusing terms in HOKE can cause continuous phase shift and off-axis evolution of the laser fields when irregular homoclinic orbit crossings of the field in phase space take place. As the laser propagates, small-scale spatial structures rapidly appear and the evolution of the laser field becomes chaotic. The two complex patterns can switch between each other quasi-periodically. Numerical results show that the two complex patterns are associated with the stochastic evolution of the energy contained in the higher-order shorter-wavelength Fourier modes. Such complex patterns, associated with small-scale filaments, may be typical for laser propagation in a HOKE medium.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/2/4/1.4773324.html;jsessionid=gpe7a80cwbhl.x-aip-live-02?itemId=/content/aip/journal/adva/2/4/10.1063/1.4773324&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Propagation of femtosecond terawatt laser pulses in N2 gas including higher-order Kerr effects
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/4/10.1063/1.4773324
10.1063/1.4773324
SEARCH_EXPAND_ITEM