1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Effect of neutral collision and radiative heat-loss function on self-gravitational instability of viscous thermally conducting partially-ionized plasma
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/2/4/10.1063/1.4773348
1.
1. J. H. Jeans, Phil. Trans. Roy. Soc. London A 199, 1 (1902).
http://dx.doi.org/10.1098/rsta.1902.0012
2.
2. S. Kato and S. S. Kumar, Publ. Astron. Soc. Japan 12, 290 (1960).
3.
3. K. M. Kossaki, Acta Astronomica 11, 83 (1961).
4.
4. N. K. Nayyer, Z. Astrophys. 52, 266 (1961).
5.
5. B. K. Shivamoggi, Astrophys. Space Sci. 114, 15 (1985).
http://dx.doi.org/10.1007/BF02463864
6.
6. R. C. Sharma and B. Singh, Astrophys. Space Sci. 143, 233 (1988).
http://dx.doi.org/10.1007/BF00637137
7.
7. V. Kumar, N. Kumar, K. M. Shrivastava, and R. C. Mittal, Astrophys. Space Sci. 199, 323 (1993).
http://dx.doi.org/10.1007/BF00613206
8.
8. M. F. El-Sayed and R. A. Mohamed, ISRN Mechanical Engineering, doi:10.5402/2011/597172 (2011).
http://dx.doi.org/10.5402/2011/597172
9.
9. M. K. Vyas and R. K. Chhajlani, Astrophys. Space Sci. 140, 89 (1988).
http://dx.doi.org/10.1007/BF00643533
10.
10. D. S. Vaghela and R. K. Chhajlani, Contrib. Plasma Phys. 29, 77 (1989).
http://dx.doi.org/10.1002/ctpp.2150290111
11.
11. R. K. Chhajlani and A. K. Parihar, Contrib. Plasma Phys. 33, 227 (1993).
http://dx.doi.org/10.1002/ctpp.2150330308
12.
12. G. B. Field, Astrophys. J. 142, 531 (1965).
http://dx.doi.org/10.1086/148317
13.
13. J. H. Hunter, Icaras 5, 321 (1966).
http://dx.doi.org/10.1016/0019-1035(66)90047-9
14.
14. J. W. Cook, C. C. Cheng, V. L. Jacobs, and S. K. Antiochos, Astrophys. J. 338, 1176 (1988).
http://dx.doi.org/10.1086/167268
15.
15. G. Van Hoven and Y. Mok, Astrophys. J. 282, 267 (1984).
http://dx.doi.org/10.1086/162199
16.
16. J. H. Hunter, Mon. Not. R. Astron. Soc. 133, 239 (1966).
17.
17. M. Aggarwal and S. P. Talwar, Mon. Not. R. Astron. Soc. 146, 235 (1969).
18.
18. M. Aggarwal and S. P. Talwar, Publ. Astron. soc. Japan 21, 176 (1969).
19.
19. M. Beltrametti, Astrophys. J. 250, 18 (1981).
http://dx.doi.org/10.1086/159344
20.
20. M. R. Gupta, K. Tanuka, and B. Basu, Astrophys. Space Sci. 176, 85 (1991).
http://dx.doi.org/10.1007/BF00643079
21.
21. M. P. Bora and S. P. Talwar, Phys. Fluids. B 5, 950 (1993).
http://dx.doi.org/10.1063/1.860944
22.
22. M. Renard and J. P. Chieze, Astron. Astrophys. 267, 549 (1993).
23.
23. C. B. Dwivedi, R. Singh, and K. Avinash, Phys. Scr. 53, 760 (1996).
http://dx.doi.org/10.1088/0031-8949/53/6/019
24.
24. S. P. Talwar and M. P. Bora, J. Plasma Phys. 54, 157 (1995).
http://dx.doi.org/10.1017/S0022377800018420
25.
25. R. P. Prajapati, R. K. Pensia, S. Kaothekar, and R. K. Chhajlani, Astrophys. Space Sci. 327, 139 (2010).
http://dx.doi.org/10.1007/s10509-010-0273-6
26.
26. A. Ali and P. K. Bhatia, Phys. Scr. 47, 561 (1993).
http://dx.doi.org/10.1088/0031-8949/47/4/015
27.
27. P. K. Bhatia and A. B. Rajib Hazarika, Phys. Scr. 51, 775 (1995).
http://dx.doi.org/10.1088/0031-8949/51/6/012
28.
28. S. Shaikh, A. Khan, and P. K. Bhatia, Contrib. Plasma Phys. 47, 147 (2007).
http://dx.doi.org/10.1002/ctpp.200710021
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/4/10.1063/1.4773348
Loading
/content/aip/journal/adva/2/4/10.1063/1.4773348
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/2/4/10.1063/1.4773348
2012-12-20
2015-07-28

Abstract

The problem of thermal instability and gravitational instability is investigated for a partially ionized self-gravitating plasma which has connection in astrophysical condensations. We use normal mode analysis method in this problem. The general dispersion relation is derived using linearized perturbation equations of the problem. Effects of collisions with neutrals, radiative heat-loss function, viscosity, thermal conductivity and magnetic field strength, on the instability of the system are discussed. The conditions of instability are derived for a temperature-dependent and density-dependent heat-loss function with thermal conductivity. Numerical calculations have been performed to discuss the effect of various physical parameters on the growth rate of the gravitational instability. The temperature-dependent heat-loss function, thermal conductivity, viscosity, magnetic field and neutral collision have stabilizing effect, while density-dependent heat-loss function has a destabilizing effect on the growth rate of the gravitational instability. With the help of Routh-Hurwitz's criterion, the stability of the system is discussed.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/2/4/1.4773348.html;jsessionid=9dteaj66sj40l.x-aip-live-02?itemId=/content/aip/journal/adva/2/4/10.1063/1.4773348&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address

Oops! This section does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Effect of neutral collision and radiative heat-loss function on self-gravitational instability of viscous thermally conducting partially-ionized plasma
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/4/10.1063/1.4773348
10.1063/1.4773348
SEARCH_EXPAND_ITEM