1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Review Article: Quasi-phase-matching engineering of entangled photons
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/2/4/10.1063/1.4773457
1.
1. J. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. 127, 1918 (1962).
http://dx.doi.org/10.1103/PhysRev.127.1918
2.
2. P. A. Franken and J. F. Ward, Rev. Mod. Phys. 35, 23 (1963).
http://dx.doi.org/10.1103/RevModPhys.35.23
3.
3. N. B. Ming, Physical Fundamentals of Crystal Growth (Shanghai Scienti®c & Technical Publishers, Shanghai, 1982) (in Chinese).
4.
4. D. Feng, N. B. Ming, J. F. Hong, J. S. Zhu, Z. Yang, and Y. N. Wang, Appl. Phys. Lett. 37, 607 (1980).
http://dx.doi.org/10.1063/1.92035
5.
5. V. Berger, Phys. Rev. Lett. 81, 4136 (1998).
http://dx.doi.org/10.1103/PhysRevLett.81.4136
6.
6. M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, Appl. Phys. Lett. 62, 435 (1993).
http://dx.doi.org/10.1063/1.108925
7.
7. J. Webjörn, V. Pruneri, P. St. J. Russell, J. R. M. Barr, and D. C. Hanna, Electron. Lett. 30, 894 (1994).
http://dx.doi.org/10.1049/el:19940562
8.
8. S. N. Zhu, Y. Y. Zhu, Z. Y. Zhang, H. Shu, H. F. Wang, J. F. Hong, C. Z. Ge, and N. B. Ming, J. Appl. Phys. 77, 5481 (1995).
http://dx.doi.org/10.1063/1.359250
9.
9. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron 28, 2631 (1992).
http://dx.doi.org/10.1109/3.161322
10.
10. S. N. Zhu, Y. Y. Zhu, and N. B. Ming, Science 278, 843 (1997).
http://dx.doi.org/10.1126/science.278.5339.843
11.
11. S. N. Zhu, Y. Y. Zhu, Y. Q. Qin, H. F. Wang, C. Z. Ge, and N. B. Ming, Phys. Rev. Lett. 78, 2752 (1997).
http://dx.doi.org/10.1103/PhysRevLett.78.2752
12.
12. J. R. Kurz, A. M. Schober, D. S. Hum, A. J. Saltzman, and M. M. Fejer, IEEE J. Sel. Top. Quantum Electron. 8, 660 (2002).
http://dx.doi.org/10.1109/JSTQE.2002.1016370
13.
13. Y. Q. Qin, C. Zhang, Y. Y. Zhu, X. P. Hu, and G. Zhao, Phys. Rev. Lett. 100, 063902 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.063902
14.
14. T. Ellenbogen, N. Voloch-Bloch, A. Ganany-Padowicz, and A. Arie, Nature Photon. 3, 395 (2009).
http://dx.doi.org/10.1038/nphoton.2009.95
15.
15. N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, Phys. Rev. Lett. 84, 4345 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.4345
16.
16. Y. Y. Zhu, and N. B. Ming, Phys. Rev. B 42, 3676 (1990).
http://dx.doi.org/10.1103/PhysRevB.42.3676
17.
17. Y. Y. Zhu and N. B. Ming, Opt. Quantum Electron. 31, 1093 (1999).
http://dx.doi.org/10.1023/A:1006932103769
18.
18. A. Norton and C. de Sterke, Opt. Express 12, 841 (2004).
http://dx.doi.org/10.1364/OPEX.12.000841
19.
19. J. Liao, J. L. He, H. Liu, J. Du, F. Xu, H. T. Wang, S. N. Zhu, Y. Y. Zhu, and N. B. Ming, Appl. Phys. B 78, 265 (2004).
http://dx.doi.org/10.1007/s00340-003-1399-9
20.
20. P. Xu, S. H. Ji, S. N. Zhu, X. Q. Yu, J. Sun, H. T. Wang, J. L. He, Y. Y. Zhu, and N. B. Ming, Phys. Rev. Lett. 93, 133904 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.133904
21.
21. P. Xu, S. N. Zhu, X. Q. Yu, S. H. Ji, Z. D. Gao, G. Zhao, Y. Y. Zhu, and N. B. Ming, Phys. Rev. B 72, 064307 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.064307
22.
22. Y. Zhang, Z. D. Gao, Z. Qi, S. N. Zhu, and N. B. Ming, Phys. Rev. Lett. 100, 163904 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.163904
23.
23. Y. Zhang, J. Wen, S. N. Zhu, and M. Xiao, Phys. Rev. Lett. 104, 183901 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.183901
24.
24. Z. Chen, D. Liu, Y. Zhang, J. Wen, S. N. Zhu, and M. Xiao, Opt. Lett. 37, 689 (2012).
http://dx.doi.org/10.1364/OL.37.000689
25.
25. S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, Electron. Lett. 37, 26 (2001).
http://dx.doi.org/10.1049/el:20010009
26.
26. J. P. Torres, A. Alexandrescu, S. Carrasco, and L. Torner, Opt. Lett. 29, 376 (2004).
http://dx.doi.org/10.1364/OL.29.000376
27.
27. H. Y. Leng, X. Q. Yu, Y. X. Gong, P. Xu, Z. D. Xie, H. Jin, C. Zhang, and S. N. Zhu, Nature Commun. 2, 429 (2011).
http://dx.doi.org/10.1038/ncomms1439
28.
28. P. Xu, H. Y. Leng, Z. H. Zhu, Y. F. Bai, H. Jin, Y. X. Gong, X. Q. Yu, Z. D. Xie, S. Y. Mu, and S. N. Zhu, Phys. Rev. A 86, 013805 (2012).
http://dx.doi.org/10.1103/PhysRevA.86.013805
29.
29. H. Jin, P. Xu, J. S. Zhao, H. Y. Leng, M. L. Zhong, and S. N. Zhu, Appl. Phys. Lett. 101, 211115 (2012).
http://dx.doi.org/10.1063/1.4766728
30.
30. X. Q. Yu, P. Xu, Z. D. Xie, J. F. Wang, H. Y. Leng, J. S. Zhao, S. N. Zhu, and N. B. Ming, Phys. Rev. Lett. 101, 233601 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.233601
31.
31. Y. X. Gong, Z. D. Xie, P. Xu, X. Q. Yu, P. Xue, and S. N. Zhu, Phys. Rev. A 84, 053825 (2011).
http://dx.doi.org/10.1103/PhysRevA.84.053825
32.
32. Y. X. Gong, P. Xu, Y. F. Bai, J. Yang, H. Y. Leng, Z. D. Xie, and S. N. Zhu, Phys. Rev. A 86, 023835 (2012).
http://dx.doi.org/10.1103/PhysRevA.86.023835
33.
33. Y. X. Gong, P. Xu, J. Shi, L. Chen, X. Q. Yu, P. Xue, and S. N. Zhu, Opt. Lett. 37, 4374 (2012).
http://dx.doi.org/10.1364/OL.37.004374
34.
34. J. Shi, S. J. Yun, Y. F. Bai, P. Xu, and S. N. Zhu, Opt. Commun. 285, 5549 (2012).
http://dx.doi.org/10.1016/j.optcom.2012.07.118
35.
35. S. Carrasco, J. P. Torres, L. Torner, A. Sergienko, B. E. A. Saleh, and M. C. Teich, Opt. Lett. 29, 2429 (2004).
http://dx.doi.org/10.1364/OL.29.002429
36.
36. S. E. Harris, Phys. Rev. Lett. 98, 063602 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.063602
37.
37. M. B. Nasr, S. Carrasco, B. E. A. Saleh, A. V. Sergienko, M. C. Teich, J. P. Torres, L. Torner, D. S. Hum, and M. M. Fejer, Phys. Rev. Lett. 100, 183601 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.183601
38.
38. S. Sensarn, G. Y. Yin, and S. E. Harris, Phys. Rev. Lett. 104, 253602 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.253602
39.
39. Y. F. Bai, P. Xu, Z. D. Xie, Y. X. Gong, and S. N. Zhu, Phys. Rev. A 85, 053807 (2012).
http://dx.doi.org/10.1103/PhysRevA.85.053807
40.
40. D. Bonneau, M. Lobino, P. Jiang, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, M. G. Thompson, and J. L. O’Brien, Phys. Rev. Lett. 108, 053601 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.053601
41.
41. J. L. O’Brien, A. Furusawa, and J. Vučković, Nature Photon. 3, 687 (2009).
http://dx.doi.org/10.1038/nphoton.2009.229
42.
42. M. H. Rubin, Phys. Rev. A 54, 5349 (1996).
http://dx.doi.org/10.1103/PhysRevA.54.5349
43.
43. Z. Y. Ou and Y. J. Lu, Phys. Rev. Lett. 83, 2556 (1999).
http://dx.doi.org/10.1103/PhysRevLett.83.2556
44.
44. C. E. Kuklewicz, F. N. C. Wong, and J. H. Shapiro, Phys. Rev. Lett. 97, 223601 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.223601
45.
45. X. H. Bao, Y. Qian, J. Yang, H. Zhang, Z. B. Chen, T. Yang, and J. W. Pan, Phys. Rev. Lett. 101, 190501 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.190501
46.
46. A. Valencia, G. Scarcelli, and Y. Shih, Appl. Phys. Lett. 85, 2655 (2004).
http://dx.doi.org/10.1063/1.1797561
47.
47. V. Giovannetti, S. Lloyd, and L. Maccone, Science 306, 1330 (2004).
http://dx.doi.org/10.1126/science.1104149
48.
48. N. C. Menicucci, S. T. Flammia, and O. Pfister, Phys. Rev. Lett. 101, 130501 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.130501
49.
49. M. Pysher, Y. Miwa, R. Shahrokhshahi, R. Bloomer, and O. Pfister, Phys. Rev. Lett. 107, 030505 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.030505
50.
50. M. Pysher, A. Bahabad, P. Peng, A. Arie, and O. Pfister, Opt. Lett. 35, 565 (2010).
http://dx.doi.org/10.1364/OL.35.000565
51.
51. O. Kuzucu, M. Fiorentino, M. A. Albota, F. N. C. Wong, and F. X. K¨artner, Phys. Rev. Lett. 94, 083601 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.083601
52.
52. V. Giovannetti, L. Maccone, J. H. Shapiro, and F. N. C. Wong, Phys. Rev. Lett. 88, 183602 (2002);
http://dx.doi.org/10.1103/PhysRevLett.88.183602
52.V. Giovannetti, L. Maccone, J. H. Shapiro, and F. N. C. Wong, Phys. Rev. A 66, 043813 (2002).
http://dx.doi.org/10.1103/PhysRevA.66.043813
53.
53. Zhang et al., Nature Photon. 5, 628 (2011).
http://dx.doi.org/10.1038/nphoton.2011.213
54.
54. A. M. Brańczyk, A. Fedrizzi, T. M. Stace, T. C. Ralph, and A. G. White, Opt. Express 19, 55 (2011).
http://dx.doi.org/10.1364/OE.19.000055
55.
55. M. Genovese, Phys. Rep. 413, 319 (2005).
http://dx.doi.org/10.1016/j.physrep.2005.03.003
56.
56. Y. Shih, Rep. Prog. Phys. 66, 1009 (2003).
http://dx.doi.org/10.1088/0034-4885/66/6/203
57.
57. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, Phys. Rev. Lett. 75, 4337 (1995).
http://dx.doi.org/10.1103/PhysRevLett.75.4337
58.
58. P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, Phys. Rev. A 60, R773 (1999).
http://dx.doi.org/10.1103/PhysRevA.60.R773
59.
59. A. Yoshizawa and H. Tsuchida, Appl. Phys. Lett. 85, 2457 (2004).
http://dx.doi.org/10.1063/1.1799233
60.
60. F. König, E. J. Mason, F. N. C. Wong, and M. A. Albota, Phys. Rev. A 71, 033805 (2005).
http://dx.doi.org/10.1103/PhysRevA.71.033805
61.
61. Y.-K. Jiang and A. Tomita, J. Phys. B 40, 437 (2007).
http://dx.doi.org/10.1088/0953-4075/40/2/016
62.
62. H. C. Lim, A. Yoshizawa, H. Tsuchida, and K. Kikuchi, Opt. Express 16, 12460 (2008);
http://dx.doi.org/10.1364/OE.16.012460
62.H. C. Lim, A. Yoshizawa, H. Tsuchida, and K. Kikuchi, Opt. Express 16, 16052 (2008).
http://dx.doi.org/10.1364/OE.16.016052
63.
63. S. Sauge, M. Swillo, M. Tengner, and A. Karlsson, Opt. Express 16, 9701 (2008).
http://dx.doi.org/10.1364/OE.16.009701
64.
64. M. Hentschel, H. Hübel, A. Poppe, and A. Zeilinger, Opt. Express 17, 23153 (2009).
http://dx.doi.org/10.1364/OE.17.023153
65.
65. M. Fiorentino and R. G. Beausoleil, Opt. Express 16, 20149 (2008).
http://dx.doi.org/10.1364/OE.16.020149
66.
66. E. V. Moreva, G. A. Maslennikov, S. S. Straupe, and S. P. Kulik, Phys. Rev. Lett. 97, 023602 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.023602
67.
67. M. Pelton, P. Marsden, D. Ljunggren, M. Tengner, A. Karlsson, A. Fragemann, C. Canalias, and F. Laurell, Opt. Express 12, 3573 (2004).
http://dx.doi.org/10.1364/OPEX.12.003573
68.
68. D. Ljunggren, M. Tengner, P. Marsden, and M. Pelton, Phys. Rev. A 73, 032326 (2006).
http://dx.doi.org/10.1103/PhysRevA.73.032326
69.
69. T. Suhara, G. Nakaya, J. Kawashima, and M. Fujimura, IEEE Photon. Technol. Lett. 21, 1096 (2009).
http://dx.doi.org/10.1109/LPT.2009.2023799
70.
70. W. Ueno, F. Kaneda, H. Suzuki, S. Nagano, A. Syouji, R. Shimizu, K. Suizu, and K. Edamatsu, Opt. Express 20, 5508 (2012).
http://dx.doi.org/10.1364/OE.20.005508
71.
71. K. Thyagarajan, J. Lugani, S. Ghosh, K. Sinha, A. Martin, D. B. Ostrowsky, O. Alibart, and S. Tanzilli, Phys. Rev. A 80, 052321 (2009).
http://dx.doi.org/10.1103/PhysRevA.80.052321
72.
72. Z. H. Levine, J. Fan, J. Chen, and A. L. Migdall, Opt. Express 19, 6724 (2011)
http://dx.doi.org/10.1364/OE.19.006724
73.
73. C. I. Osorio, A. Valencia, and J. P. Torres, New J. Phys. 10, 113012 (2008).
http://dx.doi.org/10.1088/1367-2630/10/11/113012
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/4/10.1063/1.4773457
Loading
/content/aip/journal/adva/2/4/10.1063/1.4773457
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/2/4/10.1063/1.4773457
2012-12-28
2014-10-23

Abstract

Quasi-phase-matching (QPM) technique has been successfully applied in nonlinear optics, such as optical frequency conversion. Recently, remarkable advances have been made in the QPM generation and manipulation of photon entanglement. In this paper, we review the current progresses in the QPM engineering of entangled photons, which are finished mainly by our group. By the design of concurrent QPM processes insides a single nonlinear optical crystal, the spectrum of entangled photons can be extended or shaped on demand, also the spatial entanglement can be transformed by transverse inhomogeneity of domain modulation, resulting in new applications in path-entanglement, quantum Talbot effects, quantum imaging etc. Combined with waveguide structures and the electro-opticeffect, the entangled photons can be generated, then guided and phase-controlled within a single QPM crystal chip. QPM devices can act as a key ingredient in integrated quantum information processing.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/2/4/1.4773457.html;jsessionid=ihqu4r9f76gw.x-aip-live-03?itemId=/content/aip/journal/adva/2/4/10.1063/1.4773457&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Review Article: Quasi-phase-matching engineering of entangled photons
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/4/10.1063/1.4773457
10.1063/1.4773457
SEARCH_EXPAND_ITEM