1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Review Article: Quasi-phase-matching engineering of entangled photons
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/2/4/10.1063/1.4773457
1.
1. J. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. 127, 1918 (1962).
http://dx.doi.org/10.1103/PhysRev.127.1918
2.
2. P. A. Franken and J. F. Ward, Rev. Mod. Phys. 35, 23 (1963).
http://dx.doi.org/10.1103/RevModPhys.35.23
3.
3. N. B. Ming, Physical Fundamentals of Crystal Growth (Shanghai Scienti®c & Technical Publishers, Shanghai, 1982) (in Chinese).
4.
4. D. Feng, N. B. Ming, J. F. Hong, J. S. Zhu, Z. Yang, and Y. N. Wang, Appl. Phys. Lett. 37, 607 (1980).
http://dx.doi.org/10.1063/1.92035
5.
5. V. Berger, Phys. Rev. Lett. 81, 4136 (1998).
http://dx.doi.org/10.1103/PhysRevLett.81.4136
6.
6. M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, Appl. Phys. Lett. 62, 435 (1993).
http://dx.doi.org/10.1063/1.108925
7.
7. J. Webjörn, V. Pruneri, P. St. J. Russell, J. R. M. Barr, and D. C. Hanna, Electron. Lett. 30, 894 (1994).
http://dx.doi.org/10.1049/el:19940562
8.
8. S. N. Zhu, Y. Y. Zhu, Z. Y. Zhang, H. Shu, H. F. Wang, J. F. Hong, C. Z. Ge, and N. B. Ming, J. Appl. Phys. 77, 5481 (1995).
http://dx.doi.org/10.1063/1.359250
9.
9. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron 28, 2631 (1992).
http://dx.doi.org/10.1109/3.161322
10.
10. S. N. Zhu, Y. Y. Zhu, and N. B. Ming, Science 278, 843 (1997).
http://dx.doi.org/10.1126/science.278.5339.843
11.
11. S. N. Zhu, Y. Y. Zhu, Y. Q. Qin, H. F. Wang, C. Z. Ge, and N. B. Ming, Phys. Rev. Lett. 78, 2752 (1997).
http://dx.doi.org/10.1103/PhysRevLett.78.2752
12.
12. J. R. Kurz, A. M. Schober, D. S. Hum, A. J. Saltzman, and M. M. Fejer, IEEE J. Sel. Top. Quantum Electron. 8, 660 (2002).
http://dx.doi.org/10.1109/JSTQE.2002.1016370
13.
13. Y. Q. Qin, C. Zhang, Y. Y. Zhu, X. P. Hu, and G. Zhao, Phys. Rev. Lett. 100, 063902 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.063902
14.
14. T. Ellenbogen, N. Voloch-Bloch, A. Ganany-Padowicz, and A. Arie, Nature Photon. 3, 395 (2009).
http://dx.doi.org/10.1038/nphoton.2009.95
15.
15. N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, Phys. Rev. Lett. 84, 4345 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.4345
16.
16. Y. Y. Zhu, and N. B. Ming, Phys. Rev. B 42, 3676 (1990).
http://dx.doi.org/10.1103/PhysRevB.42.3676
17.
17. Y. Y. Zhu and N. B. Ming, Opt. Quantum Electron. 31, 1093 (1999).
http://dx.doi.org/10.1023/A:1006932103769
18.
18. A. Norton and C. de Sterke, Opt. Express 12, 841 (2004).
http://dx.doi.org/10.1364/OPEX.12.000841
19.
19. J. Liao, J. L. He, H. Liu, J. Du, F. Xu, H. T. Wang, S. N. Zhu, Y. Y. Zhu, and N. B. Ming, Appl. Phys. B 78, 265 (2004).
http://dx.doi.org/10.1007/s00340-003-1399-9
20.
20. P. Xu, S. H. Ji, S. N. Zhu, X. Q. Yu, J. Sun, H. T. Wang, J. L. He, Y. Y. Zhu, and N. B. Ming, Phys. Rev. Lett. 93, 133904 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.133904
21.
21. P. Xu, S. N. Zhu, X. Q. Yu, S. H. Ji, Z. D. Gao, G. Zhao, Y. Y. Zhu, and N. B. Ming, Phys. Rev. B 72, 064307 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.064307
22.
22. Y. Zhang, Z. D. Gao, Z. Qi, S. N. Zhu, and N. B. Ming, Phys. Rev. Lett. 100, 163904 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.163904
23.
23. Y. Zhang, J. Wen, S. N. Zhu, and M. Xiao, Phys. Rev. Lett. 104, 183901 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.183901
24.
24. Z. Chen, D. Liu, Y. Zhang, J. Wen, S. N. Zhu, and M. Xiao, Opt. Lett. 37, 689 (2012).
http://dx.doi.org/10.1364/OL.37.000689
25.
25. S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, Electron. Lett. 37, 26 (2001).
http://dx.doi.org/10.1049/el:20010009
26.
26. J. P. Torres, A. Alexandrescu, S. Carrasco, and L. Torner, Opt. Lett. 29, 376 (2004).
http://dx.doi.org/10.1364/OL.29.000376
27.
27. H. Y. Leng, X. Q. Yu, Y. X. Gong, P. Xu, Z. D. Xie, H. Jin, C. Zhang, and S. N. Zhu, Nature Commun. 2, 429 (2011).
http://dx.doi.org/10.1038/ncomms1439
28.
28. P. Xu, H. Y. Leng, Z. H. Zhu, Y. F. Bai, H. Jin, Y. X. Gong, X. Q. Yu, Z. D. Xie, S. Y. Mu, and S. N. Zhu, Phys. Rev. A 86, 013805 (2012).
http://dx.doi.org/10.1103/PhysRevA.86.013805
29.
29. H. Jin, P. Xu, J. S. Zhao, H. Y. Leng, M. L. Zhong, and S. N. Zhu, Appl. Phys. Lett. 101, 211115 (2012).
http://dx.doi.org/10.1063/1.4766728
30.
30. X. Q. Yu, P. Xu, Z. D. Xie, J. F. Wang, H. Y. Leng, J. S. Zhao, S. N. Zhu, and N. B. Ming, Phys. Rev. Lett. 101, 233601 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.233601
31.
31. Y. X. Gong, Z. D. Xie, P. Xu, X. Q. Yu, P. Xue, and S. N. Zhu, Phys. Rev. A 84, 053825 (2011).
http://dx.doi.org/10.1103/PhysRevA.84.053825
32.
32. Y. X. Gong, P. Xu, Y. F. Bai, J. Yang, H. Y. Leng, Z. D. Xie, and S. N. Zhu, Phys. Rev. A 86, 023835 (2012).
http://dx.doi.org/10.1103/PhysRevA.86.023835
33.
33. Y. X. Gong, P. Xu, J. Shi, L. Chen, X. Q. Yu, P. Xue, and S. N. Zhu, Opt. Lett. 37, 4374 (2012).
http://dx.doi.org/10.1364/OL.37.004374
34.
34. J. Shi, S. J. Yun, Y. F. Bai, P. Xu, and S. N. Zhu, Opt. Commun. 285, 5549 (2012).
http://dx.doi.org/10.1016/j.optcom.2012.07.118
35.
35. S. Carrasco, J. P. Torres, L. Torner, A. Sergienko, B. E. A. Saleh, and M. C. Teich, Opt. Lett. 29, 2429 (2004).
http://dx.doi.org/10.1364/OL.29.002429
36.
36. S. E. Harris, Phys. Rev. Lett. 98, 063602 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.063602
37.
37. M. B. Nasr, S. Carrasco, B. E. A. Saleh, A. V. Sergienko, M. C. Teich, J. P. Torres, L. Torner, D. S. Hum, and M. M. Fejer, Phys. Rev. Lett. 100, 183601 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.183601
38.
38. S. Sensarn, G. Y. Yin, and S. E. Harris, Phys. Rev. Lett. 104, 253602 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.253602
39.
39. Y. F. Bai, P. Xu, Z. D. Xie, Y. X. Gong, and S. N. Zhu, Phys. Rev. A 85, 053807 (2012).
http://dx.doi.org/10.1103/PhysRevA.85.053807
40.
40. D. Bonneau, M. Lobino, P. Jiang, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, M. G. Thompson, and J. L. O’Brien, Phys. Rev. Lett. 108, 053601 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.053601
41.
41. J. L. O’Brien, A. Furusawa, and J. Vučković, Nature Photon. 3, 687 (2009).
http://dx.doi.org/10.1038/nphoton.2009.229
42.
42. M. H. Rubin, Phys. Rev. A 54, 5349 (1996).
http://dx.doi.org/10.1103/PhysRevA.54.5349
43.
43. Z. Y. Ou and Y. J. Lu, Phys. Rev. Lett. 83, 2556 (1999).
http://dx.doi.org/10.1103/PhysRevLett.83.2556
44.
44. C. E. Kuklewicz, F. N. C. Wong, and J. H. Shapiro, Phys. Rev. Lett. 97, 223601 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.223601
45.
45. X. H. Bao, Y. Qian, J. Yang, H. Zhang, Z. B. Chen, T. Yang, and J. W. Pan, Phys. Rev. Lett. 101, 190501 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.190501
46.
46. A. Valencia, G. Scarcelli, and Y. Shih, Appl. Phys. Lett. 85, 2655 (2004).
http://dx.doi.org/10.1063/1.1797561
47.
47. V. Giovannetti, S. Lloyd, and L. Maccone, Science 306, 1330 (2004).
http://dx.doi.org/10.1126/science.1104149
48.
48. N. C. Menicucci, S. T. Flammia, and O. Pfister, Phys. Rev. Lett. 101, 130501 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.130501
49.
49. M. Pysher, Y. Miwa, R. Shahrokhshahi, R. Bloomer, and O. Pfister, Phys. Rev. Lett. 107, 030505 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.030505
50.
50. M. Pysher, A. Bahabad, P. Peng, A. Arie, and O. Pfister, Opt. Lett. 35, 565 (2010).
http://dx.doi.org/10.1364/OL.35.000565
51.
51. O. Kuzucu, M. Fiorentino, M. A. Albota, F. N. C. Wong, and F. X. K¨artner, Phys. Rev. Lett. 94, 083601 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.083601
52.
52. V. Giovannetti, L. Maccone, J. H. Shapiro, and F. N. C. Wong, Phys. Rev. Lett. 88, 183602 (2002);
http://dx.doi.org/10.1103/PhysRevLett.88.183602
52.V. Giovannetti, L. Maccone, J. H. Shapiro, and F. N. C. Wong, Phys. Rev. A 66, 043813 (2002).
http://dx.doi.org/10.1103/PhysRevA.66.043813
53.
53. Zhang et al., Nature Photon. 5, 628 (2011).
http://dx.doi.org/10.1038/nphoton.2011.213
54.
54. A. M. Brańczyk, A. Fedrizzi, T. M. Stace, T. C. Ralph, and A. G. White, Opt. Express 19, 55 (2011).
http://dx.doi.org/10.1364/OE.19.000055
55.
55. M. Genovese, Phys. Rep. 413, 319 (2005).
http://dx.doi.org/10.1016/j.physrep.2005.03.003
56.
56. Y. Shih, Rep. Prog. Phys. 66, 1009 (2003).
http://dx.doi.org/10.1088/0034-4885/66/6/203
57.
57. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, Phys. Rev. Lett. 75, 4337 (1995).
http://dx.doi.org/10.1103/PhysRevLett.75.4337
58.
58. P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, Phys. Rev. A 60, R773 (1999).
http://dx.doi.org/10.1103/PhysRevA.60.R773
59.
59. A. Yoshizawa and H. Tsuchida, Appl. Phys. Lett. 85, 2457 (2004).
http://dx.doi.org/10.1063/1.1799233
60.
60. F. König, E. J. Mason, F. N. C. Wong, and M. A. Albota, Phys. Rev. A 71, 033805 (2005).
http://dx.doi.org/10.1103/PhysRevA.71.033805
61.
61. Y.-K. Jiang and A. Tomita, J. Phys. B 40, 437 (2007).
http://dx.doi.org/10.1088/0953-4075/40/2/016
62.
62. H. C. Lim, A. Yoshizawa, H. Tsuchida, and K. Kikuchi, Opt. Express 16, 12460 (2008);
http://dx.doi.org/10.1364/OE.16.012460
62.H. C. Lim, A. Yoshizawa, H. Tsuchida, and K. Kikuchi, Opt. Express 16, 16052 (2008).
http://dx.doi.org/10.1364/OE.16.016052
63.
63. S. Sauge, M. Swillo, M. Tengner, and A. Karlsson, Opt. Express 16, 9701 (2008).
http://dx.doi.org/10.1364/OE.16.009701
64.
64. M. Hentschel, H. Hübel, A. Poppe, and A. Zeilinger, Opt. Express 17, 23153 (2009).
http://dx.doi.org/10.1364/OE.17.023153
65.
65. M. Fiorentino and R. G. Beausoleil, Opt. Express 16, 20149 (2008).
http://dx.doi.org/10.1364/OE.16.020149
66.
66. E. V. Moreva, G. A. Maslennikov, S. S. Straupe, and S. P. Kulik, Phys. Rev. Lett. 97, 023602 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.023602
67.
67. M. Pelton, P. Marsden, D. Ljunggren, M. Tengner, A. Karlsson, A. Fragemann, C. Canalias, and F. Laurell, Opt. Express 12, 3573 (2004).
http://dx.doi.org/10.1364/OPEX.12.003573
68.
68. D. Ljunggren, M. Tengner, P. Marsden, and M. Pelton, Phys. Rev. A 73, 032326 (2006).
http://dx.doi.org/10.1103/PhysRevA.73.032326
69.
69. T. Suhara, G. Nakaya, J. Kawashima, and M. Fujimura, IEEE Photon. Technol. Lett. 21, 1096 (2009).
http://dx.doi.org/10.1109/LPT.2009.2023799
70.
70. W. Ueno, F. Kaneda, H. Suzuki, S. Nagano, A. Syouji, R. Shimizu, K. Suizu, and K. Edamatsu, Opt. Express 20, 5508 (2012).
http://dx.doi.org/10.1364/OE.20.005508
71.
71. K. Thyagarajan, J. Lugani, S. Ghosh, K. Sinha, A. Martin, D. B. Ostrowsky, O. Alibart, and S. Tanzilli, Phys. Rev. A 80, 052321 (2009).
http://dx.doi.org/10.1103/PhysRevA.80.052321
72.
72. Z. H. Levine, J. Fan, J. Chen, and A. L. Migdall, Opt. Express 19, 6724 (2011)
http://dx.doi.org/10.1364/OE.19.006724
73.
73. C. I. Osorio, A. Valencia, and J. P. Torres, New J. Phys. 10, 113012 (2008).
http://dx.doi.org/10.1088/1367-2630/10/11/113012
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/4/10.1063/1.4773457
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) Comparison between time correlation of mode-locked biphotons from the APLT and that of the general biphotons from a single plain crystal. In the numerical calculation, we take λ p = 400 nm, Δω = 1.26 × 1014 Hz, L = 10 mm and the number of frequency comb N = 6. The overall frequency comb covers 442 nm. The two-photon then will be mode-locked to 4.2 fs. Suppose each mode has equal spectrum width σ = 6.3 × 1012 Hz. (b) HOM interference pattern of mode-locked two-photon state when the number of frequency pairs is 6. The inset is the corresponding frequency spectrum of optical frequency comb with Gaussian Envelope. Fig. 1 is selected from literature39 (Reproduced with permission from Y. F. Bai et al., Phys. Rev. A85, 053807 (2012).10.1103/PhysRevA.85.053807 Copyright 2012 American Physical Society).

Image of FIG. 2.

Click to view

FIG. 2.

The near field and far field two-photon interference pattern. The longitudinal periodicity is Λ = 7.548 μm for the 1064 nm degenerate entangled photons generation. (a) Experimental two-photon Talbot carpet from (1/2)z T (48 mm) to (3/2)z T (144 mm). The transverse stripe interval is Λ tr = 160 μm with stripe width b = 20 μm and stripe length L = 10 mm. (b) Experimental results of two-photon far-field interference in the detection plane z = 1.4 m. The transverse stripe interval is Λ tr = 200 μm with stripe width b = 30 μm and stripe length L = 6 mm. The upper one corresponds the case that one detector is fixed and the other scans, while the lower one corresponds to the case that two detectors scan in-step. Figs. 2(a) and 2(b) are selected from literature29 (Reprinted with permission from H. Jin et al., Appl. Phys. Lett.101, 211115 (2012).10.1063/1.4766728 Copyright 2012 American Institute of Physics) and literature30 (Reproduced with permission from X. Q. Yu et al., Phys. Rev. Lett.101, 233601 (2008).10.1103/PhysRevLett.101.233601 Copyright 2008 American Physical Society), respectively.

Image of FIG. 3.

Click to view

FIG. 3.

(a) The micrograph of parabolic NPC. The longitudinal periodicity of NPC is Λ = 13.917 μm. The third-order reciprocal vector ensures the degenerate 914 nm photon pair generation. The focal length of two-photon lens is designed to be f eff = 33.3. The stripe interval Λ tr is 20 μm, stripe width b is 10 μm and stripe length L is 6 mm. (b) The theoretical simulation of two-photon focusing dynamics under a full pump width of 0.82 mm. (c) The experimental results of two-photon focusing. The two-photon focusing spot is 28 μm, which is consistent with the theoretical value. Fig. 3(a) is selected from literature28 (Reproduced with permission from P. Xu et al., Phys. Rev. A.86, 013805 (2012).10.1103/PhysRevA.86.013805 Copyright 2012 American Physical Society). Figs. 3(b) and 3(c) are from literature27 (Reproduced with permission from H. Y. Leng et al., Nature Commun.2, 429 (2011).10.1038/ncomms1439 Copyright 2011, Rights Managed by Nature Publishing Group).

Image of FIG. 4.

Click to view

FIG. 4.

(a) The schematic setup for lensless ghost imaging using entangled photons from parabolic NPC. (b) The double slit object. The slit interval is 300 μm and the slit width is 150 μm. (c) The recovered imaging by coincidence counting. Figs. 4(a) and 4(c) are selected from literature28 (Reproduced with permission from P. Xu et al., Phys. Rev. A.86, 013805 (2012).10.1103/PhysRevA.86.013805 Copyright 2012 American Physical Society).

Image of FIG. 5.

Click to view

FIG. 5.

(a) Schematic of a 2D NPC with a rectangular inverted domain structure. (b) the reciprocal lattice and the concurrent three QPM SPDC processes. Reciprocal lattice of the crystal. (c) Transverse pattern of the parametric light in the Fourier plane. Fig. 5 is selected from literature32 (Reproduced with permission from Y. X. Gong et al., Phys. Rev. A.86, 023835 (2012).10.1103/PhysRevA.86.023835 Copyright 2012 American Physical Society).

Loading

Article metrics loading...

/content/aip/journal/adva/2/4/10.1063/1.4773457
2012-12-28
2014-04-25

Abstract

Quasi-phase-matching (QPM) technique has been successfully applied in nonlinear optics, such as optical frequency conversion. Recently, remarkable advances have been made in the QPM generation and manipulation of photon entanglement. In this paper, we review the current progresses in the QPM engineering of entangled photons, which are finished mainly by our group. By the design of concurrent QPM processes insides a single nonlinear optical crystal, the spectrum of entangled photons can be extended or shaped on demand, also the spatial entanglement can be transformed by transverse inhomogeneity of domain modulation, resulting in new applications in path-entanglement, quantum Talbot effects, quantum imaging etc. Combined with waveguide structures and the electro-opticeffect, the entangled photons can be generated, then guided and phase-controlled within a single QPM crystal chip. QPM devices can act as a key ingredient in integrated quantum information processing.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/2/4/1.4773457.html;jsessionid=1m5ffwganrswj.x-aip-live-06?itemId=/content/aip/journal/adva/2/4/10.1063/1.4773457&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Review Article: Quasi-phase-matching engineering of entangled photons
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/4/10.1063/1.4773457
10.1063/1.4773457
SEARCH_EXPAND_ITEM