1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Thermal conductivities of one-dimensional anharmonic/nonlinear lattices: renormalized phonons and effective phonon theory
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/2/4/10.1063/1.4773459
1.
1. S. Liu, X. Xu, R. Xie, G. Zhang, and B. Li, Eur. Phys. J. B (2012).
2.
2. F. Bonetto, J. L. Lebowitz, and L. Ray-Bellet, in Mathematical Physics 2000, edited by A. Fokas et al. (Imperial College Press, London, 2000), 128 (2000).
3.
3. S. Lepri, R. Livi, and A. Politi, Phys. Rep. 377, 1 (2003).
http://dx.doi.org/10.1016/S0370-1573(02)00558-6
4.
4. B. Li, J. Wang, L. Wang, and G. Zhang, CHAOS 15, 015121 (2005).
http://dx.doi.org/10.1063/1.1832791
5.
5. J.-S. Wang, J. Wang, and J. T. , Eur. Phys. J. B 62, 381 (2008).
http://dx.doi.org/10.1140/epjb/e2008-00195-8
6.
6. A. Dhar, Adv. Phys. 57, 457 (2008).
http://dx.doi.org/10.1080/00018730802538522
7.
7. C. W. Chang, D. Okawa, H. Garcia, A. Majumdar, and A. Zettl, Phys. Rev. Lett. 101, 075903 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.075903
8.
8. M. Terrano, M. Peyrard, and G. Casati, Phys. Rev. Lett. 88, 094302 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.094302
9.
9. B. Li, L. Wang, and G. Casati, Phys. Rev. Lett. 93, 184301 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.184301
10.
10. B. Li, J. Lan, and L. Wang, Phys. Rev. Lett. 95, 104302 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.104302
11.
11. C. W. Chang, D. Okawa, A. Majumdar, and A. Zettl, Science 314, 1121 (2006).
http://dx.doi.org/10.1126/science.1132898
12.
12. B. Li, L. Wang, and G. Casati, Appl. Phys. Lett. 88, 143501 (2006).
http://dx.doi.org/10.1063/1.2191730
13.
13. L. Wang and B. Li, Phys. Rev. Lett. 99, 177208 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.177208
14.
14. L. Wang and B. Li, Phys. Rev. Lett. 101, 267203 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.267203
15.
15. R. Xie, C. T. Bui, B. Varghese, Q. Zhang, C. H. Sow, B. Li, and J. T. L. Thong, Adv. Funct. Mater. 21, 1602 (2011).
http://dx.doi.org/10.1002/adfm.201002436
16.
16. N. Li, J. Ren, G. Zhang, L. Wang, P. Hänggi, and B. Li, Rev. Mod. Phys. 84, 1045 (2012).
http://dx.doi.org/10.1103/RevModPhys.84.1045
17.
17. C. Alabiso, M. Casartelli, and P. Marenzoni, J. Stat. Phys. 79, 451 (1995).
http://dx.doi.org/10.1007/BF02179398
18.
18. C. Alabiso and M. Casartelli, J. Phys. A 34, 1223 (2001).
http://dx.doi.org/10.1088/0305-4470/34/7/301
19.
19. S. Lepri, Phys. Rev. E 58, 7165 (1998).
http://dx.doi.org/10.1103/PhysRevE.58.7165
20.
20. B. Gershgorin, Y. V. Lvov, and D. Cai, Phys. Rev. Lett. 95, 264302 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.264302
21.
21. B. Gershgorin, Y. V. Lvov, and D. Cai, Phys. Rev. Lett. 75, 046603 (2007).
http://dx.doi.org/10.1103/PhysRevE.75.046603
22.
22. N. Li, P. Tong, and B. Li, EPL 75, 49 (2006).
http://dx.doi.org/10.1209/epl/i2006-10079-7
23.
23. N. Li and B. Li, EPL 78, 34001 (2007).
http://dx.doi.org/10.1209/0295-5075/78/34001
24.
24. D. He, S. Buyukdagli, and B. Hu, Phys. Rev. E 78, 061103 (2008).
http://dx.doi.org/10.1103/PhysRevE.78.061103
25.
25. J. A. D. Wattis, J. Phys. A 26, 1193 (1993).
http://dx.doi.org/10.1088/0305-4470/26/5/036
26.
26. G. Friesecke and J. A. D. Wattis, Commun. Math. Phys. 161, 391 (1994).
http://dx.doi.org/10.1007/BF02099784
27.
27. F. Zhang, D. J. Isbister, and D. J. Evans, Phys. Rev. E 61, 3541 (2000).
http://dx.doi.org/10.1103/PhysRevE.61.3541
28.
28. F. Zhang, D. J. Isbister, and D. J. Evans, Phys. Rev. E 64, 021102 (2001).
http://dx.doi.org/10.1103/PhysRevE.64.021102
29.
29. S. Flach and C. R. Willis, Phys. Rep. 295, 181 (1998).
http://dx.doi.org/10.1016/S0370-1573(97)00068-9
30.
30. S. Flach and A. Gorbach, Phys. Rep. 467, 1 (2008).
http://dx.doi.org/10.1016/j.physrep.2008.05.002
31.
31. B. Hu, B. Li, and H. Zhao, Phys. Rev. E 61, 3828 (2000).
http://dx.doi.org/10.1103/PhysRevE.61.3828
32.
32. K. Aoki and D. Kusnezov, Phys. Rev. Lett. 86, 4029 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.4029
33.
33. H. Zhao, Z. Wen, Y. Zhang, and D. Zheng, Phys. Rev. Lett. 94, 025507 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.025507
34.
34. N. Li, B. Li, and S. Flach, Phys. Rev. Lett. 105, 054102 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.054102
35.
35. K. Aoki and D. Kusnezov, Phys. Lett. A 265, 250 (2000).
http://dx.doi.org/10.1016/S0375-9601(99)00899-3
36.
36. B. Hu and L. Yang, CHAOS 15, 015119 (2005).
http://dx.doi.org/10.1063/1.1862552
37.
37. R. Lefevere and A. Schenkel, J. Stat. Mech.: Theory Exp., L02001 (2006).
http://dx.doi.org/10.1088/1742-5468/2006/02/L02001
38.
38. N. Li and B. Li, Phys. Rev. E 76, 011108 (2007).
http://dx.doi.org/10.1103/PhysRevE.76.011108
39.
39. L. Nicolin and D. Segal, Phys. Rev. E 81, 040102R (2010).
http://dx.doi.org/10.1103/PhysRevE.81.040102
40.
40. S. Flach, M. Ivanchenko, and N. Li, Pramana J. Phys. 77, 1007 (2011).
http://dx.doi.org/10.1007/s12043-011-0186-0
41.
41. N. Li and B. Li, J. Phys. Soc. Jap. 78, 044001 (2009).
http://dx.doi.org/10.1143/JPSJ.78.044001
42.
42. H. Zhao, Phys. Rev. Lett. 96, 140602 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.140602
43.
43. F. Piazza and S. Lepri, Phys. Rev. B 79, 094306 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.094306
44.
44. C. Giardina, R. Livi, A. Politi, and M. Vassalli, Phys. Rev. Lett. 84, 2144 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.2144
45.
45. O. V. Gendelman and A. V. Savin, Phys. Rev. Lett. 84, 2381 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.2381
46.
46. Y. Zhong, Y. Zhang, J. Wang, and H. Zhao, Phys. Rev. E 85, 060102R (2012).
http://dx.doi.org/10.1103/PhysRevE.85.060102
47.
47. G. R. Lee-Dadswell, E. Turner, J. Ettinger, and M. Moy, Phys. Rev. E 82, 061118 (2010).
http://dx.doi.org/10.1103/PhysRevE.82.061118
48.
48. B. Hu, B. Li, and H. Zhao, Phys. Rev. E 57, 2992 (1998).
http://dx.doi.org/10.1103/PhysRevE.57.2992
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/4/10.1063/1.4773459
Loading
/content/aip/journal/adva/2/4/10.1063/1.4773459
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/2/4/10.1063/1.4773459
2012-12-28
2014-09-02

Abstract

Heat transport in low-dimensional systems has attracted enormous attention from both theoretical and experimental aspects due to its significance to the perception of fundamental energy transport theory and its potential applications in the emerging field of phononics: manipulating heat flow with electronic anologs. We consider the heat conduction of one-dimensional nonlinear lattice models. The energy carriers responsible for the heat transport have been identified as the renormalized phonons. Within the framework of renormalized phonons, a phenomenological theory,effective phonontheory, has been developed to explain the heat transport in general one-dimensional nonlinear lattices. With the help of numerical simulations, it has been verified that this effective phonontheory is able to predict the scaling exponents of temperature-dependent thermal conductivitiesquantitatively and consistently.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/2/4/1.4773459.html;jsessionid=bcjlt3bfac4p4.x-aip-live-02?itemId=/content/aip/journal/adva/2/4/10.1063/1.4773459&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Thermal conductivities of one-dimensional anharmonic/nonlinear lattices: renormalized phonons and effective phonon theory
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/4/10.1063/1.4773459
10.1063/1.4773459
SEARCH_EXPAND_ITEM