1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Thermal transport in nanostructures
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/2/4/10.1063/1.4773462
1.
1. S. Maruyama, Microscale Therm. Eng. 7, 41 (2003).
http://dx.doi.org/10.1080/10893950390150467
2.
2. S. G. Volz and G. Chen, Appl. Phys. Lett. 75, 2056 (1999).
http://dx.doi.org/10.1063/1.124914
3.
3. A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, Nano Lett. 8, 902 (2008).
http://dx.doi.org/10.1021/nl0731872
4.
4. G. Chen, J. Heat Transf. 119, 220 (1997).
http://dx.doi.org/10.1115/1.2824212
5.
5. K. Huang and B.-F. Zhu, Phys. Rev. B 38, 2183 (1988).
http://dx.doi.org/10.1103/PhysRevB.38.2183
6.
6. B. Li and J. Wang, Phys. Rev. Lett. 91, 044301 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.044301
7.
7. J.-S. Wang and B. Li, Phys. Rev. Lett. 92, 074302 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.074302
8.
8. H. Zhao, L. Yi, F. Liu, and B. Xu, Eur. Phys. J. B 54, 185 (2006).
http://dx.doi.org/10.1140/epjb/e2006-00442-0
9.
9. O. Narayan and S. Ramaswamy, Phys. Rev. Lett. 89, 200601 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.200601
10.
10. A. Dhar, Adv. Phys. 57, 457 (2008).
http://dx.doi.org/10.1080/00018730802538522
11.
11. S. Lepri, R. Livi, and A. Politi, Phys. Rev. E 68, 067102 (2003).
http://dx.doi.org/10.1103/PhysRevE.68.067102
12.
12. G. Chen, Phys. Rev. Lett. 86, 2297 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.2297
13.
13. N. Li, P. Tong, and B. Li, Europhys. Lett. 75, 49 (2006).
http://dx.doi.org/10.1209/epl/i2006-10079-7
14.
14. F. X. Alvarez, D. Jou, and A. Sellitto, J. Appl. Phys. 105, 014317 (2009).
http://dx.doi.org/10.1063/1.3056136
15.
15. F. X. Alvarez, D. Jou, and A. Sellitto, J. Heat Transf. 133, 022402 (2011).
http://dx.doi.org/10.1115/1.4002439
16.
16. D. Y. Tzou and Z.-Y. Guo, Inter. J.Therm. Sci. 49, 1133 (2010).
http://dx.doi.org/10.1016/j.ijthermalsci.2010.01.022
17.
17. N. Yang, G. Zhang, and B. Li, Nano Today 5, 85 (2010).
http://dx.doi.org/10.1016/j.nantod.2010.02.002
18.
18. J. Chen, G. Zhang, and B. Li, Phys. Soc. JPN 79, 074604 (2010).
http://dx.doi.org/10.1143/JPSJ.79.074604
19.
19. J. Chen, G. Zhang, and B. Li, Phys. Lett. A 374, 2392 (2010).
http://dx.doi.org/10.1016/j.physleta.2010.03.067
20.
20. B.-Y. Cao and Y.-W. Li, J. Chem. Phys. 133, 024106 (2010).
http://dx.doi.org/10.1063/1.3463699
21.
21. B.-Y. Cao, J. Chem. Phys. 129, 074106 (2008).
http://dx.doi.org/10.1063/1.2969762
22.
22. Z. Wang, R. Zhao, and Y. Chen, Sci. China Ser. E 53, 429 (2010).
http://dx.doi.org/10.1007/s11431-009-0338-3
23.
23. N. Yang, X. Ni, J.-W. Jiang, and B. Li, Appl. Phys. Lett. 100, 093107 (2012).
http://dx.doi.org/10.1063/1.3690871
24.
24. Y. Xu, J.-S. Wang, W. Duan, B.-L. Gu, and B. Li, Phys. Rev. B 78, 224303 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.224303
25.
25. G. Chen, J. Heat Transf. 121, 945 (1999).
http://dx.doi.org/10.1115/1.2826085
26.
26. D. G. Cahill, W. K. Ford, K. E. Goodson, G. D. Mahan, A. Majumdar, H. J. Maris, R. Merlin, and S. R. Phillpot, J. Appl. Phys. 93, 793 (2003).
http://dx.doi.org/10.1063/1.1524305
27.
27. B. Li, J. Wang, L. Wang, and G. Zhang, Chaos 15, 015121 (2005).
http://dx.doi.org/10.1063/1.1832791
28.
28. N. Li, J. Ren, L. Wang, G. Zhang, P. Hänggi, and B. Li, Rev. Mod. Phys. 84, 1045 (2012).
http://dx.doi.org/10.1103/RevModPhys.84.1045
29.
29. G. Zhang and B. Li, Nanoscale 2, 1058 (2010).
http://dx.doi.org/10.1039/c0nr00095g
30.
30. E. Pop, Nano Research 3, 147 (2010).
http://dx.doi.org/10.1007/s12274-010-1019-z
31.
31. Y. Dubi and M. Di Ventra, Rev. Mod. Phys. 83, 131 (2011).
http://dx.doi.org/10.1103/RevModPhys.83.131
32.
32. S. Liu, X. Xu, R. Xie, G. Zhang, and B. Li, Eur. Phys. J. B 85, 1 (2012).
33.
33. N. Yang, “Thermal Transport in Low Dimensional Graded Structures and Silicon Nanowires,” Ph.D Thesis, National University of Singapore, Singapore (2009).
34.
34. J. Chen, “Theoretical Investigation on Thermal Properties of Silicon Based Nanostructures,” Ph.D Thesis, National University of Singapore, Singapore (2011).
35.
35. L. Shi, “Electrical-thermal energy transfer and energy conversion in semiconductor nanowires,” Ph.D Thesis, National University of Singapore, Singapore (2011).
36.
36. S. Iijima, Nature 354, 56 (1991).
http://dx.doi.org/10.1038/354056a0
37.
37. S. Berber, Y.-K. Kwon, and D. Tománek, Phys. Rev. Lett. 84, 4613 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.4613
38.
38. P. Kim, L. Shi, A. Majumdar, and P. L. McEuen, Phys. Rev. Lett. 87, 215502 (2001).
http://dx.doi.org/10.1103/PhysRevLett.87.215502
39.
39. G. Zhang and B. Li, J. Phys. Chem. B 109, 23823 (2005).
http://dx.doi.org/10.1021/jp0558167
40.
40. D. J. Yang, Q. Zhang, G. Chen, S. F. Yoon, J. Ahn, S. G. Wang, Q. Zhou, Q. Wang, and J. Q. Li, Phys. Rev. B 66, 165440 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.165440
41.
41. C. W. Padgett and D. W. Brenner, Nano Lett. 4, 1051 (2004).
http://dx.doi.org/10.1021/nl049645d
42.
42. J. F. Moreland, Microscale Therm. Eng. 8, 61 (2004).
http://dx.doi.org/10.1080/10893950490272939
43.
43. S. Maruyama, Physica B 323, 193 (2002).
http://dx.doi.org/10.1016/S0921-4526(02)00898-0
44.
44. C. W. Chang, D. Okawa, H. Garcia, A. Majumdar, and A. Zettl, Phys. Rev. Lett. 101, 075903 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.075903
45.
45. G. Zhang and B. Li, J. Chem. Phys. 123, 114714 (2005).
http://dx.doi.org/10.1063/1.2036967
46.
46. Z.-X. Guo and X.-G. Gong, Fron. Phys. China 4, 389 (2009).
http://dx.doi.org/10.1007/s11467-009-0039-1
47.
47. H. Zhu, Y. Xu, B.-L. Gu, and W. Duan, New J. Phys. 14, 0130531 (2012).
http://dx.doi.org/10.1088/1367-2630/14/1/013053
48.
48. Z.-Y. Ong and E. Pop, Phys. Rev. B 81, 155408 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.155408
49.
49. Z. Guo, D. Zhang, Y. Zhai, and X.-G. Gong, Nanotechnology 21, 285706 (2010).
http://dx.doi.org/10.1088/0957-4484/21/28/285706
50.
50. Z.-X. Guo, D. Zhang, and X.-G. Gong, Phys. Rev. B 84, 075470 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.075470
51.
51. W. Lin, J. Shang, W. Gu, and C. P. Wong, Carbon 50, 1591 (2012).
http://dx.doi.org/10.1016/j.carbon.2011.11.038
52.
52. Y. Gu and Y. Chen, Phys. Rev. B 76, 134110 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.134110
53.
53. J. Yang, Y. Yang, S. W. Waltermire, T. Gutu, A. A. Zinn, T. T. Xu, Y. Chen, and D. Li, Small 7, 2334 (2011).
http://dx.doi.org/10.1002/smll.201100429
54.
54. J. Yang, S. Waltermire, Y. Chen, A. A. Zinn, T. T. Xu, and D. Li, Appl. Phys. Lett. 96, 023109 (2010).
http://dx.doi.org/10.1063/1.3292203
55.
55. X. Tan, H. Liu, Y. Wen, H. Lv, L. Pan, J. Shi, and X. Tang, Nanaoscale. Res. Lett. 7, 116 (2012).
http://dx.doi.org/10.1186/1556-276X-7-116
56.
56. Y.-F. Gao, Q.-Y. Meng, L. Zhang, J.-Q. Liu, and Y.-H. Jing, Acta. Phys.-Chim. Sin. 28, 1077.
57.
57. J. Wang, L. Li, and J.-S. Wang, Appl. Phys. Lett. 99, 091905 (2011).
http://dx.doi.org/10.1063/1.3631725
58.
58. C. Ren, W. Zhang, Z. Xu, Z. Zhu, and P. Huai, J. Phys. Chem. C 114, 5786 (2010).
http://dx.doi.org/10.1021/jp910339h
59.
59. C. Ren, Z. Xu, W. Zhang, Y. Li, Z. Zhu, and P. Huai, Phys. Lett. A 374, 1860 (2010).
http://dx.doi.org/10.1016/j.physleta.2010.02.028
60.
60. X. Wang, Z. Huang, T. Wang, Y. W. Tang, and X. C. Zeng, Physica B 403, 2021 (2008).
http://dx.doi.org/10.1016/j.physb.2007.11.016
61.
61. P. Rui-Qin, X. Zi-Jian, and Z. Zhi-Yuan, Chinese Phys. Lett. 24, 1321 (2007).
http://dx.doi.org/10.1088/0256-307X/24/5/054
62.
62. T. Yamamoto and K. Watanabe, Phys. Rev. Lett. 96, 255503 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.255503
63.
63. C. W. Chang, A. M. Fennimore, A. Afanasiev, D. Okawa, T. Ikuno, H. Garcia, D. Li, A. Majumdar, and A. Zettl, Phys. Rev. Lett. 97, 089501 (2006).
64.
64. G. Zhang and B. Li, J. Chem. Phys. 123, 014705 (2005).
http://dx.doi.org/10.1063/1.1949166
65.
65. Y. Cui, Q. Wei, H. Park, and C. M. Lieber, Science 293, 1289 (2001).
http://dx.doi.org/10.1126/science.1062711
66.
66. G.-J. Zhang, G. Zhang, J. H. Chua, R.-E. Chee, E. H. Wong, A. Agarwal, K. D. Buddharaju, N. Singh, Z. Gao, and N. Balasubramanian, Nano Lett. 8, 1066 (2008).
http://dx.doi.org/10.1021/nl072991l
67.
67. J. Xiang, W. Lu, Y. Hu, Y. Wu, H. Yan, and C. M. Lieber, Nature 441, 489 (2006).
http://dx.doi.org/10.1038/nature04796
68.
68. S. C. Rustagi, N. Singh, Y. F. Lim, G. Zhang, S. Wang, G. Q. Lo, N. Balasubramanian, and D. L. Kwong, IEEE Electr. Device L. 28, 909 (2007).
http://dx.doi.org/10.1109/LED.2007.904890
69.
69. L. Hu and G. Chen, Nano Lett. 7, 3249 (2007).
http://dx.doi.org/10.1021/nl071018b
70.
70. J. Li, H. Yu, S. M. Wong, G. Zhang, X. Sun, P. G.-Q. Lo, and D.-L. Kwong, Appl. Phys. Lett. 95, 033102 (2009).
http://dx.doi.org/10.1063/1.3186046
71.
71. D. Li, Y. Wu, P. Kim, L. Shi, P. Yang, and A. Majumdar, Appl. Phys. Lett. 83, 2934 (2003).
http://dx.doi.org/10.1063/1.1616981
72.
72. Y. Chen, D. Li, J. R. Lukes, and A. Majumdar, J. Heat Transf. 127, 1129 (2005).
http://dx.doi.org/10.1115/1.2035114
73.
73. D. Yao, G. Zhang, and B. Li, Nano Lett. 8, 4557 (2008).
http://dx.doi.org/10.1021/nl802807t
74.
74. D. Yao, G. Zhang, G.-Q. Lo, and B. Li, Appl. Phys. Lett. 94, 113113 (2009).
http://dx.doi.org/10.1063/1.3103366
75.
75. J. Chen, G. Zhang, and B. Li, J. Chem. Phys. 135, 104508 (2011).
http://dx.doi.org/10.1063/1.3637044
76.
76. J. Chen, G. Zhang, and B. Li, J. Chem. Phys. 135, 204705 (2011).
http://dx.doi.org/10.1063/1.3663386
77.
77. D. Donadio and G. Galli, Phys. Rev. Lett. 102, 195901 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.195901
78.
78. Y. Chen, D. Li, J. Yang, Y. Wu, J. R. Lukes, and A. Majumdar, Physica B 349, 270 (2004).
http://dx.doi.org/10.1016/j.physb.2004.03.247
79.
79. N. Yang, G. Zhang, and B. Li, Nano Lett. 8, 276 (2008).
http://dx.doi.org/10.1021/nl0725998
80.
80. P. K. Schelling, S. R. Phillpot, and P. Keblinski, Phys. Rev. B 65, 144306 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.144306
81.
81. L. H. Liang and B. Li, Phys. Rev. B 73, 153303 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.153303
82.
82. M. Wang, N. Yang, and Z.-Y. Guo, J. Appl. Phys. 110, 064310 (2011).
http://dx.doi.org/10.1063/1.3634078
83.
83. Z.-X. Xie, K.-Q. Chen, and L.-M. Tang, J. Appl. Phys. 110, 124321 (2011).
http://dx.doi.org/10.1063/1.3671643
84.
84. X.-F. Peng, K.-Q. Chen, Q. Wan, B. S. Zou, and W. Duan, Phys. Rev. B 81, 195317 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.195317
85.
85. X.-F. Peng and K.-Q. Chen, Physica E 42, 1968 (2010).
http://dx.doi.org/10.1016/j.physe.2010.02.022
86.
86. X.-F. Peng and X.-J. Wang, J. Appl. Phys. 110, 044305 (2011).
http://dx.doi.org/10.1063/1.3622590
87.
87. J. Chen, G. Zhang, and B. Li, Appl. Phys. Lett. 95, 073117 (2009).
http://dx.doi.org/10.1063/1.3212737
88.
88. J. Chen, G. Zhang, and B. Li, Nano Lett. 10, 3978 (2010).
http://dx.doi.org/10.1021/nl101836z
89.
89. H. P. Li, A. D. Sarkar, and R. Q. Zhang, Europhys. Lett. 96, 56007 (2011).
http://dx.doi.org/10.1209/0295-5075/96/56007
90.
90. G. Chen, Phys. Rev. B 57, 14958 (1998).
http://dx.doi.org/10.1103/PhysRevB.57.14958
91.
91. J. Chen, G. Zhang, and B. Li, Nano Lett. 12, 2826 (2012).
http://dx.doi.org/10.1021/nl300208c
92.
92. M. C. Wingert, Z. C. Y. Chen, E. Dechaumphai, J. Moon, J.-H. Kim, J. Xiang, and R. Chen, Nano Lett. 11, 5507 (2011).
http://dx.doi.org/10.1021/nl203356h
93.
93. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004).
http://dx.doi.org/10.1126/science.1102896
94.
94. Y. Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim, Nature 438, 201 (2005).
http://dx.doi.org/10.1038/nature04235
95.
95. D. Xiong, J. Wang, Y. Zhang, and H. Zhao, Phys. Rev. E 82, 030101 (2010).
http://dx.doi.org/10.1103/PhysRevE.82.030101
96.
96. W. J. Evans, L. Hu, and P. Keblinski, Appl. Phys. Lett. 96, 203112 (2010).
http://dx.doi.org/10.1063/1.3435465
97.
97. H. Zheng, H. J. Liu, X. J. Tan, H. Y. Lv, L. Pan, J. Shi, and X. F. Tang, Appl. Phys. Lett. 100, 093104 (2012).
http://dx.doi.org/10.1063/1.3689780
98.
98. J. Zhang, X. Huang, Y. Yue, J. Wang, and X. Wang, Phys. Rev. B 84, 235416 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.235416
99.
99. Z.-X. Xie, K.-Q. Chen, and W. Duan, J. Phys. Condens. Mat. 23, 315302 (2011).
http://dx.doi.org/10.1088/0953-8984/23/31/315302
100.
100. J.-W. Jiang, J.-S. Wang, and B. Li, Phys. Rev. B 79, 2054181 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.205418
101.
101. J. W. Jiang, J. H. Lan, J. S. Wang, and B. W. Li, J. Appl. Phys. 107, 054314 (2010).
http://dx.doi.org/10.1063/1.3329541
102.
102. T. Ouyang, Y. P. Chen, K. K. Yang, and J. X. Zhong, Europhys. Lett. 88, 28002 (2009).
http://dx.doi.org/10.1209/0295-5075/88/28002
103.
103. X.-F. Peng, X.-J. Wang, Z.-Q. Gong, and K.-Q. Chen, Appl. Phys. Lett. 99, 233105 (2011).
http://dx.doi.org/10.1063/1.3666221
104.
104. X.-F. Peng, X.-J. Wang, L.-Q. Chen, and K.-Q. Chen, Europhys. Lett. 98, 56001 (2012).
http://dx.doi.org/10.1209/0295-5075/98/56001
105.
105. X. Li, K. Maute, M. L. Dunn, and R. Yang, Phys. Rev. B 81, 245318 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.245318
106.
106. X. Zhai and G. Jin, Europhys. Lett. 96, 16002 (2011).
http://dx.doi.org/10.1209/0295-5075/96/16002
107.
107. N. Wei, L. Q. Xu, H. Q. Wang, and J. C. Zheng, Nanotechnology 22, (2011).
http://dx.doi.org/10.1088/0957-4484/22/10/105705
108.
108. J.-W. Jiang, J.-S. Wang, and B. Li, Phys. Rev. B 80, 1134051 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.113405
109.
109. Z.-X. Guo, J. W. Ding, and X.-G. Gong, Phys. Rev. B 85, 235429 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.235429
110.
110. G. Zhang and H. Zhang, Nanoscale 3, 4604 (2011).
http://dx.doi.org/10.1039/c1nr10945f
111.
111. W.-R. Zhong, M.-P. Zhang, B.-Q. Ai, and D.-Q. Zheng, Appl. Phys. Lett. 98, 113107 (2011).
http://dx.doi.org/10.1063/1.3567415
112.
112. H.-Y. Cao, Z.-X. Guo, H. Xiang, and X.-G. Gong, Phys. Lett. A 376, 525 (2012).
http://dx.doi.org/10.1016/j.physleta.2011.11.016
113.
113. Y. Xu, X. Chen, J.-S. Wang, B.-L. Gu, and W. Duan, Phys. Rev. B 81, 195425 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.195425
114.
114. Y. Xu, X. Chen, B.-L. Gu, and W. Duan, Appl. Phys. Lett. 95, 233116 (2009).
http://dx.doi.org/10.1063/1.3272678
115.
115. J.-W. Jiang, J.-S. Wang, and B. Li, J. Appl. Phys. 108, 0643071 (2010).
http://dx.doi.org/10.1063/1.3481677
116.
116. J.-W. Jiang and J.-S. Wang, Phys. Rev. B 81, 174117 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.174117
117.
117. Z.-X. Xie, L.-M. Tang, C.-N. Pan, K.-M. Li, K.-Q. Chen, and W. Duan, Appl. Phys. Lett. 100, 073105 (2012).
http://dx.doi.org/10.1063/1.3685694
118.
118. Z.-X. Guo, D. Zhang, and X.-G. Gong, Appl. Phys. Lett. 95, 163103 (2009).
http://dx.doi.org/10.1063/1.3246155
119.
119. T. Ouyang, Y. Chen, L.-M. Liu, Y. Xie, X. Wei, and J. Zhong, Phys. Rev. B 85, 235436 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.235436
120.
120. T. Ouyang, Y. Chen, Y. Xie, G. M. Stocks, and J. Zhong, Appl. Phys. Lett. 99, 233101 (2011).
http://dx.doi.org/10.1063/1.3665184
121.
121. Z. Wei, Z. Ni, K. Bi, M. Chen, and Y. Chen, Phys. Lett. A 375, 1195 (2011).
http://dx.doi.org/10.1016/j.physleta.2011.01.025
122.
122. Z. Wei, Z. Ni, K. Bi, M. Chen, and Y. Chen, Carbon 49, 2653 (2011).
http://dx.doi.org/10.1016/j.carbon.2011.02.051
123.
123. Z.-G. Bao, Y.-P. Chen, T. Ouyang et al., Acta Phys. Sin. 60, 028103 (2011).
124.
124. T. Ouyang, Y. Chen, Y. Xie, K. Yang, Z. Bao, and J. Zhong, Nanotechnology 21, 245701 (2010).
http://dx.doi.org/10.1088/0957-4484/21/24/245701
125.
125. K. Yang, Y. Chen, Y. Xie, X. L. Wei, T. Ouyang, and J. Zhong, Solid State Commun. 151, 460 (2011).
http://dx.doi.org/10.1016/j.ssc.2011.01.002
126.
126. B.-Q. Ai, W.-R. Zhong, and B. Hu, J. Phys. Chem. C 116, 13810 (2012).
http://dx.doi.org/10.1021/jp303431k
127.
127. R. Ma, L. Zhu, L. Sheng, M. Liu, and D. N. Sheng, Phys. Rev. B 84, 075420 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.075420
128.
128. F. Hao, D. Fang, and Z. Xu, Appl. Phys. Lett. 99, 041901 (2011).
http://dx.doi.org/10.1063/1.3615290
129.
129. K. Yang, Y. Chen, Y. Xie, T. Ouyang, and J. Zhong, Europhys. Lett. 91, 46006 (2010).
http://dx.doi.org/10.1209/0295-5075/91/46006
130.
130. L. Lu, W. Yi, and D. L. Zhang, Rev. Sci. Instrum. 72, 2296 (2001).
131.
131. J. Hone, M. Whitney, C. Piskoti, and A. Zettl, Phys. Rev. B 59, R2514 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.R2514
132.
132. W. Yi, L. Lu, D. L. Zhang, Z. W. Pan, and S. S. Xie, Phys. Rev. B 59, R9015 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.R9015
133.
133. R. Chen, A. I. Hochbaum, P. Murphy, J. Moore, P. Yang, and A. Majumdar, Phys. Rev. Lett. 101, 105501 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.105501
134.
134. A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, and P. Yang, Nature 451, 163 (2008).
http://dx.doi.org/10.1038/nature06381
135.
135. K. Hippalgaonkar, B. Huang, R. Chen, K. Sawyer, P. Ercius, and A. Majumdar, Nano Lett. 10, 4341 (2010).
http://dx.doi.org/10.1021/nl101671r
136.
136. L. Shi, D. Li, C. Yu, W. Jang, D. Kim, Z. Yao, P. KIM, and A. Majumdar, J. Heat Transf. 125, 881 (2003).
http://dx.doi.org/10.1115/1.1597619
137.
137. C. W. Chang, Science 320, 1121 (2008).
http://dx.doi.org/10.1126/science.1155132
138.
138. J. Yang, Y. Yang, S. Waltermire, X. Wu, H. Zhang, T. Gutu, Y. Jiang, Y. Chen, A. Zinn, R. Prasher, T. Xu, and D. Li, Nat. Nanotech. 7, 91 (2011).
http://dx.doi.org/10.1038/nnano.2011.216
139.
139. C. Bui, R. Xie, M. Zheng, Q. Zhang, C. Sow, B. Li, and J. Thong, Small 8, 738 (2012).
http://dx.doi.org/10.1002/smll.201102046
140.
140. R. Xie, C. Bui, B. Varghese, Q. Zhang, C. Sow, B. Li, and J. Thong, Adv. Funct. Mater. 21, 1602 (2011).
http://dx.doi.org/10.1002/adfm.201002436
141.
141. M. Wingert, Z. Chen, E. Dechaumphai, J. Moon, J.-H. Kim, J. Xiang, and R. Chen, Nano Lett. 11, 5507 (2011).
http://dx.doi.org/10.1021/nl203356h
142.
142. M. C. Wingert, Z. C. Y. Chen, S. Kwon, J. Xiang, and R. Chen, Rev. Sci. Instrum. 83, 024901 (2012).
http://dx.doi.org/10.1063/1.3681255
143.
143. Z. Wang, R. Xie, C. Bui, D. Liu, X. Ni, B. Li, and J. Thong, Nano Lett. 11, 113 (2011).
http://dx.doi.org/10.1021/nl102923q
144.
144. J. Yang, Y. Yang, S. W. Waltermire, X. Wu, H. Zhang, T. Gutu, Y. Jiang, Y. Chen, A. A. Zinn, R. Prasher, T. T. Xu, and D. Li, Nat Nano 7, 91 (2012).
http://dx.doi.org/10.1038/nnano.2011.216
145.
145. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature 438, 197 (2005).
http://dx.doi.org/10.1038/nature04233
146.
146. S. Ghosh, I. Calizo, D. Teweldebrhan, E. P. Pokatilov, D. L. Nika, A. A. Balandin, W. Bao, F. Miao, and C. N. Lau, Appl. Phys. Lett. 92, 151911 (2008).
http://dx.doi.org/10.1063/1.2907977
147.
147. D. L. Nika, S. Ghosh, E. P. Pokatilov, and A. A. Balandin, Appl. Phys. Lett. 94, 203103 (2009).
http://dx.doi.org/10.1063/1.3136860
148.
148. S. Ghosh, W. Bao, D. L. Nika, S. Subrina, E. P. Pokatilov, C. N. Lau, and A. A. Balandin, Nat. Mater. 9, 555 (2010).
http://dx.doi.org/10.1038/nmat2753
149.
149. W. Cai, A. L. Moore, Y. Zhu, X. Li, S. Chen, L. Shi, and R. S. Ruoff, Nano Lett. 10, 1645 (2010).
http://dx.doi.org/10.1021/nl9041966
150.
150. S. Chen, A. L. Moore, W. W. Cai, J. Suk, J. An, C. Mishra, C. Amos, A. W. Magnuson, J. Y. Kang, L. Shi, and R. S. Ruoff, ACS Nano 5, 321 (2011).
http://dx.doi.org/10.1021/nn102915x
151.
151. J.-U. Lee, D. Yoon, H. Kim, S. W. Lee, and H. Cheong, Phys. Rev. B 83, 081419 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.081419
152.
152. J. H. Seol, I. Jo, A. L. Moore, L. Lindsay, Z. H. Aitken, M. T. Pettes, X. Li, Z. Yao, R. Huang, D. Broido, N. Mingo, R. S. Ruoff, and L. Shi, Science 328, 213 (2010).
http://dx.doi.org/10.1126/science.1184014
153.
153. S. Chen, Q. Wu, C. Mishra, J. Kang, H. Zhang, K. Cho, W. Cai, A. A. Balandin, and R. S. Ruoff, Nat. Mater. 11, 203 (2012).
http://dx.doi.org/10.1038/nmat3207
154.
154. X. Xu, Y. Wang, K. Zhang, X. Zhao, S. Bae, M. Heinrich, C. T. Bui, R. Xie, J. T. L. Thong, B. H. Hong, K. P. Loh, B. Li, and B. Oezyilmaz, arXiv:1012.2937 (2010).
155.
155. N. Mingo and D. A. Broido, Phys. Rev. Lett. 95, 096105 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.096105
156.
156. E. Muñoz, J. Lu, and B. I. Yakobson, Nano Lett. 10, 1652 (2010).
http://dx.doi.org/10.1021/nl904206d
157.
157. M. Terraneo, M. Peyrard, and G. Casati, Phys. Rev. Lett. 88, 094302 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.094302
158.
158. B. Li, L. Wang, and G. Casati, Phys. Rev. Lett. 93, 184301 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.184301
159.
159. N. Yang, N. Li, L. Wang, and B. Li, Phys. Rev. B 76, 020301 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.020301
160.
160. B. Li, L. Wang, and G. Casati, Appl. Phys. Lett. 88, 143501 (2006).
http://dx.doi.org/10.1063/1.2191730
161.
161. L. Wang and B. Li, Phys. Rev. Lett. 99, 177208 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.177208
162.
162. C. W. Chang, D. Okawa, A. Majumdar, and A. Zettl, Science 314, 1121 (2006).
http://dx.doi.org/10.1126/science.1132898
163.
163. Y. Yan, Q.-F. Liang, and H. Zhao, Phys. Lett. A 375, 4074 (2011).
http://dx.doi.org/10.1016/j.physleta.2011.09.029
164.
164. Y. Yan and H. Zhao, J. Phys. Condens. Mat. 24, 275401 (2012).
http://dx.doi.org/10.1088/0953-8984/24/27/275401
165.
165. W.-R. Zhong, P. Yang, B.-Q. Ai, Z.-G. Shao, and B. Hu, Phys. Rev. E 79, 050103 (2009).
http://dx.doi.org/10.1103/PhysRevE.79.050103
166.
166. B.-Q. Ai, W.-R. Zhong, and B. Hu, Phys. Rev. E 83, 052102 (2011).
http://dx.doi.org/10.1103/PhysRevE.83.052102
167.
167. B.-Q. Ai and B. Hu, Phys. Rev. E 83, 011131 (2011).
http://dx.doi.org/10.1103/PhysRevE.83.011131
168.
168. B.-Q. Ai, D. He, and B. Hu, Phys. Rev. E 81, 031124 (2010).
http://dx.doi.org/10.1103/PhysRevE.81.031124
169.
169. S.-C. Wang and X.-G. Liang, Inter. J. Therm. Sci. 50, 680 (2011).
http://dx.doi.org/10.1016/j.ijthermalsci.2010.12.002
170.
170. W.-R. Zhong, W.-H. Huang, X.-R. Deng, and B.-Q. Ai, Appl. Phys. Lett. 99, 193104 (2011).
http://dx.doi.org/10.1063/1.3659474
171.
171. G. Wu and B. Li, Phys. Rev. B 76, 085424 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.085424
172.
172. N. Yang, G. Zhang, and B. Li, Appl. Phys. Lett. 93, 243111 (2008).
http://dx.doi.org/10.1063/1.3049603
173.
173. G. Wu and B. Li, J. Phys. Condens. Mat. 20, 175211 (2008).
http://dx.doi.org/10.1088/0953-8984/20/17/175211
174.
174. N. Yang, G. Zhang, and B. Li, Appl. Phys. Lett. 95, 033107 (2009).
http://dx.doi.org/10.1063/1.3183587
175.
175. J. Hu, X. Ruan, and Y. P. Chen, Nano Lett. 9, 2730 (2009).
http://dx.doi.org/10.1021/nl901231s
176.
176. T. Ouyang, Y. Chen, Y. Xie, X. L. Wei, K. Yang, P. Yang, and J. Zhong, Phys. Rev. B 82, 245403 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.245403
177.
177. W. Kobayashi, Y. Teraoka, and I. Terasaki, Appl. Phys. Lett. 95, 171905 (2009).
http://dx.doi.org/10.1063/1.3253712
178.
178. H. Tian, D. Xie, Y. Yang, T.-L. Ren, G. Zhang, Y.-F. Wang, C.-J. Zhou, P.-G. Peng, L.-G. Wang, and L.-T. Liu, Sci. Rep. 2 (2012).
http://dx.doi.org/10.1038/srep00523
179.
179. B. Liang, X. S. Guo, J. Tu, D. Zhang, and J. C. Cheng, Nat. Mater. 9, 989 (2012).
http://dx.doi.org/10.1038/nmat2881
180.
180. Y. Lan, A. J. Minnich, G. Chen, and Z. Ren, Adv. Funct. Mater. 20, 357 (2010).
http://dx.doi.org/10.1002/adfm.200901512
181.
181. C. J. Vineis, A. Shakouri, A. Majumdar, and M. G. Kanatzidis, Advanced Materials 22, 3970 (2010).
http://dx.doi.org/10.1002/adma.201000839
182.
182. M. Zebarjadi, K. Esfarjani, Z. Bian, and A. Shakouri, Nano Lett. 11, 225 (2010).
http://dx.doi.org/10.1021/nl103581z
183.
183. W. Xie, J. He, H. J. Kang, X. Tang, S. Zhu, M. Laver, S. Wang, J. R. D. Copley, C. M. Brown, Q. Zhang, and T. M. Tritt, Nano Lett. 10, 3283 (2010).
http://dx.doi.org/10.1021/nl100804a
184.
184. X. J. Tan, W. Liu, H. J. Liu, J. Shi, X. F. Tang, and C. Uher, Phys. Rev. B 85, 205212 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.205212
185.
185. W. Liu, X. Tang, H. Li, K. Yin, J. Sharp, X. Zhou, and C. Uher, J. Mater. Chem. 22, 13653 (2012).
http://dx.doi.org/10.1039/c2jm31919e
186.
186. W. Liu, X. Tan, K. Yin, H. Liu, X. Tang, J. Shi, Q. Zhang, and C. Uher, Phys. Rev. Lett. 108, 166601 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.166601
187.
187. X. Su, H. Li, Y. Yan, G. Wang, H. Chi, X. Zhou, X. Tang, Q. Zhang, and U. Ctirad, Acta Mater. 60, 3536 (2012).
http://dx.doi.org/10.1016/j.actamat.2012.02.034
188.
188. A. I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J. K. Yu, W. A. Goddard, and J. R. Heath, Nature 451, 168 (2008).
http://dx.doi.org/10.1038/nature06458
189.
189. Y. Chen, D. Li, J. Yang, Y. Wang, and H. Hu, J. Comput. Theor. NanoS. 5, 157 (2008).
190.
190. Y. Chen, D. Li, J. R. Lukes, Z. Ni, and M. Chen, Phys. Rev. B 72, 174302 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.174302
191.
191. L. D. Hicks and M. S. Dresselhaus, Phys. Rev. B 47, 16631 (1993).
http://dx.doi.org/10.1103/PhysRevB.47.16631
192.
192. L. Shi, D. Yao, G. Zhang, and B. Li, Appl. Phys. Lett. 95, 063102 (2009).
http://dx.doi.org/10.1063/1.3204005
193.
193. L. Shi, D. Yao, G. Zhang, and B. Li, Appl. Phys. Lett. 96, 173108 (2010).
http://dx.doi.org/10.1063/1.3421543
194.
194. G. Zhang, Q. Zhang, C.-T. Bui, G.-Q. Lo, and B. Li, Appl. Phys. Lett. 94, 213108 (2009).
http://dx.doi.org/10.1063/1.3143616
195.
195. G. Zhang, Q.-X. Zhang, D. Kavitha, and G.-Q. Lo, Appl. Phys. Lett. 95, 243104 (2009).
http://dx.doi.org/10.1063/1.3273869
196.
196. L. Shi, J. Chen, G. Zhang, and B. Li, Phys. Lett. A 376, 978 (2012).
http://dx.doi.org/10.1016/j.physleta.2011.12.040
197.
197. C. Liu and J. Li, Phys. Lett. A 375, 2878 (2011).
http://dx.doi.org/10.1016/j.physleta.2011.06.024
198.
198. H. G. Si, Y. X. Wang, Y. L. Yan, and G. B. Zhang, J. Phys. Chem. C 116, 3956 (2012).
http://dx.doi.org/10.1021/jp210583f
199.
199. H. Y. Lv, H. J. Liu, X. J. Tan, L. Pan, Y. W. Wen, J. Shi, and X. F. Tang, Nanoscale 4, 511 (2012).
http://dx.doi.org/10.1039/c1nr11585e
200.
200. K. Yang, Y. Chen, R. D’Agosta, Y. Xie, J. Zhong, and A. Rubio, Phys. Rev. B 86, 045425 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.045425
201.
201. X. Chen, Z. Wang, and Y. Ma, J. Phys. Chem. C 115, 20696 (2011).
http://dx.doi.org/10.1021/jp2060014
202.
202. X. Ni, G. Liang, J.-S. Wang, and B. Li, Appl. Phys. Lett. 95, 192114 (2009).
http://dx.doi.org/10.1063/1.3264087
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/4/10.1063/1.4773462
Loading
/content/aip/journal/adva/2/4/10.1063/1.4773462
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/2/4/10.1063/1.4773462
2012-12-28
2014-08-21

Abstract

This review summarizes recent studies of thermal transport in nanoscaled semiconductors. Different from bulk materials, new physics and novel thermal properties arise in low dimensional nanostructures, such as the abnormal heat conduction, the size dependence of thermal conductivity,phonon boundary/edge scatterings. It is also demonstrated that phonons transport super-diffusively in low dimensional structures, in other words, Fourier's law is not applicable. Based on manipulating phonons, we also discuss envisioned applications of nanostructures in a broad area, ranging from thermoelectrics, heat dissipation to phononic devices.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/2/4/1.4773462.html;jsessionid=3gio2qf7lbrj7.x-aip-live-06?itemId=/content/aip/journal/adva/2/4/10.1063/1.4773462&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Thermal transport in nanostructures
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/4/10.1063/1.4773462
10.1063/1.4773462
SEARCH_EXPAND_ITEM