1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Enhancement of optical effects in zero-reflection metal slabs based on light-tunneling mechanism in metamaterials
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/2/4/10.1063/1.4773465
1.
1. I. T. Ritchie and B. Window, Appl. Opt. 16, 1438 (1977).
http://dx.doi.org/10.1364/AO.16.001438
2.
2. M. Scalora, M. J. Bloemer, A. S. Pethel, J. P. Dowling, C. M. Bowden, and A. S. Manka, J. Appl. Phys. 83, 2377 (1998).
http://dx.doi.org/10.1063/1.366996
3.
3. J. F. Yu, Y. F. Shen, X. H. Liu, R. T. Fu, J. Zi, and Z. Q. Zhu, J. Phys.: Condens. Matter 16, 51 (2004).
http://dx.doi.org/10.1088/0953-8984/16/7/L01
4.
4. X. F. Li, Y. R. Chen, J. Miao, P. Zhou, Y. X. Zheng, L. Y. Chen, and Y. P. Lee, Opt. Express 15, 1907 (2007).
http://dx.doi.org/10.1364/OE.15.001907
5.
5. N. Bonod, G. Tayeb, D. Maystre, S. Enoch, and E. Popov, Opt. Express 16, 15431 (2008).
http://dx.doi.org/10.1364/OE.16.015431
6.
6. T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, Nat. Photonics 2, 299 (2008).
http://dx.doi.org/10.1038/nphoton.2008.76
7.
7. G. Sun and C. T. Chan, Phys. Rev. E 73, 036613 (2006).
http://dx.doi.org/10.1103/PhysRevE.73.036613
8.
8. R. A. Shelby, D. R. Smith, and S. Schultz, Science 292, 77 (2001).
http://dx.doi.org/10.1126/science.1058847
9.
9. J. B. Pendry, A. J. Holden, W. J. Stewart and I. Youngs, Phys. Rev. Lett. 76, 4773 (1996).
http://dx.doi.org/10.1103/PhysRevLett.76.4773
10.
10. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, IEEE Trans. Microwave Theory Tech. 47, 2075 (1999).
http://dx.doi.org/10.1109/22.798002
11.
11. A. Alù and N. Engheta, IEEE Trans. Antennas Propag. 51, 2558 (2003).
http://dx.doi.org/10.1109/TAP.2003.817553
12.
12. J. Y , Guo, Y. Sun, H. Q. Li, Y. W. Zhang, and H. Chen, Chin. Phys. Lett. 25, 2093 (2008).
http://dx.doi.org/10.1088/0256-307X/25/6/046
13.
13. J. Y , Guo, H. Chen, H. Q. Li, and Y. W. Zhang, Chin. Phys. B 17, 2544 (2008).
http://dx.doi.org/10.1088/1674-1056/17/7/034
14.
14. J. Y , Guo, Y. Sun, Y. W. Zhang, H. Q. Li, H. T. Jiang, and H. Chen, Phys. Rev. E 78, 026607 (2008).
http://dx.doi.org/10.1103/PhysRevE.78.026607
15.
15. M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, Phys. Rev. B 76, 165415 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.165415
16.
16. T. Goto, A. V. Dorofeenko, A. M. Merzlikin, A. V. Baryshev, A. P. Vinogradov, M. Inoue, A. A. Lisyansky, and A. B. Granovsky, Phys. Rev. Lett. 101, 113902 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.113902
17.
17. G. Q. Du, H. T. Jiang, L. Wang, Z. S. Wang, and H. Chen, Opt. Lett. 34, 578 (2009).
http://dx.doi.org/10.1364/OL.34.000578
18.
18. A. Yariv and P. Yeh, Optical waves in Crystals (Wiley, New York, 1984).
19.
19. R. Biswas, Z. Y. Li, and K. M. Ho, Appl. Phys. Lett. 84, 1254 (2004).
http://dx.doi.org/10.1063/1.1649815
20.
20. K. Busch, C. T. Chan, and C. M. Soukoulis, Photonic Band Gap Materials (Kluwer, Dordrecht, 1996).
21.
21. G. Q. Du, H. T. Jiang, L. Wang, Z. S. Wang, and H. Chen, J. Appl. Phys. 108, 103111 (2010).
http://dx.doi.org/10.1063/1.3512903
22.
22. G. Q Du, H. T. Jiang, Z. S. Wang, and H. Chen, Appl Phys A 103, 567 (2011).
http://dx.doi.org/10.1007/s00339-010-6187-x
23.
23. R. S. Bennink, Y. K. Yoon, R. W. Boyd, and J. E. Sipe, Opt. Lett. 24, 1416 (1999).
http://dx.doi.org/10.1364/OL.24.001416
24.
24. N. N. Lepeshkin, A. Schweinsberg, G. Piredda, R. S. Bennink, and R. W. Boyd, Phys. Rev. Lett. 93, 123902 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.123902
25.
25. J. He and M. Cada, Appl. Phys. Lett. 61, 2150 (1992).
http://dx.doi.org/10.1063/1.108303
26.
26. J. C. Manifacier, J. Gasiot, and J. P. Fillard, J. Phys. E: Scientific instruments 45, 1002 (1976).
http://dx.doi.org/10.1088/0022-3735/9/11/032
27.
27. D. Ricard, Ph. Roussignol, and Chr. Flytzanis, Opt. Lett. 10, 511 (1985).
http://dx.doi.org/10.1364/OL.10.000511
28.
28. M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W. Van Stryland, IEEE J. Quantum Electron 26, 760 (1990).
http://dx.doi.org/10.1109/3.53394
29.
29. C. H. Xue, H. T. Jiang, and H. Chen, Opt. Express 18, 7479 (2010).
http://dx.doi.org/10.1364/OE.18.007479
30.
30. M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, J. Appl. Phys. 76, 2023 (1994).
http://dx.doi.org/10.1063/1.358512
31.
31. K. Gallo, G. Assanto, K. R. Parameswaran, and M. M. Fejer, Appl. Phys. Lett. 79, 314 (2001).
http://dx.doi.org/10.1063/1.1386407
32.
32. G. Yang, D. Guan, W. Wang, W. Wu, and Z. Chen, Opt. Mater. 25, 439 (2004).
http://dx.doi.org/10.1016/j.optmat.2003.11.002
33.
33. C. H. Xue, H. T. Jiang, and H. Chen, Opt. Lett. 36, 855 (2011).
http://dx.doi.org/10.1364/OL.36.000855
34.
34. G. Q. Du, H. T. Jiang, Z. S. Wang, Y. P. Yang, Z. L. Wang, H. Q. Lin, and H. Chen, J. Opt. Soc. Am. B 27, 1757 (2010).
http://dx.doi.org/10.1364/JOSAB.27.001757
35.
35. Z. M. Zhang, G. Q. Du, H. T. Jiang, Y. H. Li, Z. S. Wang, and H. Chen, J. Opt. Soc. Am. B 27, 909 (2010).
http://dx.doi.org/10.1364/JOSAB.27.000909
36.
36. G. Q. Du, L. W. Zhang, and H. T. Jiang, J. Appl. Phys.109, 063525 (2011).
http://dx.doi.org/10.1063/1.3562173
37.
37. L. J. Dong, H. T. Jiang, H. Chen, and Y. L. Shi, J. Appl. Phys. 107, 093101 (2010).
http://dx.doi.org/10.1063/1.3406152
38.
38. H. Kato, T. Matsushita, A. Takayama, M. Egawa, K. Nishimura, and M. Inoue, J. Appl. Phys. 93, 3906 (2003).
http://dx.doi.org/10.1063/1.1559422
39.
39. S. Y. Wang, W. M. Zheng, D. L. Qian, R. J. Zhang, Y. X. Zheng, S. M. Zhou, Y. M. Yang, B. Y. Li, and L. Y. Chen, J. Appl. Phys. 85, 5121 (1999).
http://dx.doi.org/10.1063/1.369097
40.
40. L. J. Dong, H. T. Jiang, H. Chen, and Y. L. Shi, J. Phys. D: Appl. Phys. 44, 145402 (2011).
http://dx.doi.org/10.1088/0022-3727/44/14/145402
41.
41. H. X. Da and C. W. Qiu, Appl. Phys. Lett. 100, 241106 (2012).
http://dx.doi.org/10.1063/1.4729134
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/4/10.1063/1.4773465
Loading
/content/aip/journal/adva/2/4/10.1063/1.4773465
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/2/4/10.1063/1.4773465
2012-12-28
2014-07-29

Abstract

Metals have many extraordinary optical properties. However, thick metals are nice mirrors, which prevent light penetrating deep into them. Since the skin depth is very thin, most optical properties of bulk metals are unavailable. In this paper, we review the way of reducing reflections in thick metal slabs by coatingdielectricphotonic crystals, based on the light-tunneling mechanism in metamaterials. Owing to the boost of local fields in the metals, many optical effects such as nonlinear effects, optical extinction (absorption) and optical rotation are greatly enhanced in these simple structures. The enhancement of optical effects in thick metals may be very useful in some optical devices including optical switches and diodes, absorbers, insulators and so on.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/2/4/1.4773465.html;jsessionid=380urnjmrp1sn.x-aip-live-06?itemId=/content/aip/journal/adva/2/4/10.1063/1.4773465&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Enhancement of optical effects in zero-reflection metal slabs based on light-tunneling mechanism in metamaterials
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/4/10.1063/1.4773465
10.1063/1.4773465
SEARCH_EXPAND_ITEM