Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.V. M. Shalaev, Nature Photonics 1, 41 (2007).
2.D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, Physical Review Letters 84, 4184 (2000).
3.A. Andryieuski, C. Menzel, C. Rockstuhl, R. Malureanu, F. Lederer, and A. Lavrinenko, Physical Review B 82, 235107 (2010).
4.T. Koschny, L. Zhang, and C. M. Soukoulis, Physical Review B 71, 121103R (2005).
5.D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, Science 305, 788 (2004).
6.J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, Physical Review Letters 76, 4773 (1996).
7.J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, Ieee Transactions on Microwave Theory and Techniques 47, 2075 (1999).
8.R. A. Shelby, D. R. Smith, and S. Schultz, Science 292, 77 (2001).
9.V. M. Shalaev, W. S. Cai, U. K. Chettiar, H. K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, Optics Letters 30, 3356 (2005).
10.C. M. Soukoulis, M. Kafesaki, and E. N. Economou, Advanced Materials 18, 1941 (2006).
11.J. F. Zhou, L. Zhang, G. Tuttle, T. Koschny, and C. M. Soukoulis, Physical Review B 73, 041101R (2006).
12.G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, Optics Letters 32, 53 (2007).
13.J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, Nature 455, 376 (2008).
14.K. Lodewijks, N. Verellen, W. Van Roy, V. Moshchalkov, G. Borghs, and P. Van Dorpe, Applied Physics Letters 98, 091101 (2011).
15.X. Xiong, Z. W. Wang, S. J. Fu, M. Wang, R. W. Peng, X. P. Hao, and C. Sun, Applied Physics Letters 99, 181905 (2011).
16.J. B. Pendry, Physical Review Letters 85, 3966 (2000).
17.N. Fang, and X. Zhang, Applied Physics Letters 82, 161 (2003).
18.N. Fang, H. Lee, C. Sun, and X. Zhang, Science 308, 534 (2005).
19.J. B. Pendry, D. Schurig, and D. R. Smith, Science 312, 1780 (2006).
20.R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, Science 323, 366 (2009).
21.F. Zhou, Y. J. Bao, W. Cao, C. T. Stuart, J. Q. Gu, W. L. Zhang, and C. Sun, Scientific Reports 1, 78 (2011).
22.H. Liu, J. Ng, S. B. Wang, Z. F. Lin, Z. H. Hang, C. T. Chan, and S. N. Zhu, Physical Review Letters 106, 087401 (2011).
23.S. Zhang, W. J. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, Physical Review Letters 95, 137404 (2005).
24.S. M. Xiao, V. P. Drachev, A. V. Kildishev, X. J. Ni, U. K. Chettiar, H. K. Yuan, and V. M. Shalaev, Nature 466, 735 (2010).
25.B. Kante, A. de Lustrac, and J. M. Lourtioz, Photonics and Nanostructures-Fundamentals and Applications 8, 112 (2010).
26.A. Kamli, S. A. Moiseev, and B. C. Sanders, Physical Review Letters 101, 263601 (2008).
27.J. B. Pendry, Science 306, 1353 (2004).
28.X. Xiong, W. H. Sun, Y. J. Bao, M. Wang, R. W. Peng, C. Sun, X. Lu, J. Shao, Z. F. Li, and N. B. Ming, Physical Review B 81, 075119 (2010).
29.S. Zhang, Y. S. Park, J. S. Li, X. C. Lu, W. L. Zhang, and X. Zhang, Physical Review Letters 102, 023901 (2009).
30.E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, Physical Review B 79, 035407 (2009).
31.J. F. Zhou, J. F. Dong, B. N. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, Physical Review B 79, 121104R (2009).
32.B. N. Wang, J. F. Zhou, T. Koschny, and C. M. Soukoulis, Applied Physics Letters 94, 151112 (2009).
33.X. Xiong, W. H. Sun, Y. J. Bao, R. W. Peng, M. Wang, C. Sun, X. Lu, J. Shao, Z. F. Li, and N. B. Ming, Physical Review B 80, 201105R (2009).
34.X. Xiong, X. C. Chen, M. Wang, R. W. Peng, D. J. Shu, and C. Sun, Applied Physics Letters 98, 071901 (2011).
35.J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, Science 325, 1513 (2009).
36.J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, New York, 1999).
37.D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, Physical Review B 65, 195104 (2002).
38.M. A. Ordal, R. J. Bell, R. W. Alexander, L. L. Long, and M. R. Querry, Applied Optics 24, 4493 (1985).
39.G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, Optics Letters 31, 1800 (2006).
40.S. Wuestner, A. Pusch, K. L. Tsakmakidis, J. M. Hamm, and O. Hess, Physical Review Letters 105, 127401 (2010).

Data & Media loading...


Article metrics loading...



Metamaterials constructed with chiral units can be either optically active or nonactive depending on the spatial configuration of the building blocks. For a class of chiral units, their effective induced electric and magnetic dipoles, which originate from the induced surface electric current upon illumination of incident light, can be collinear at the resonant frequency. This feature provides significant advantage in designing metamaterials. In this paper we concentrate on several examples. In one scenario, chiral units with opposite chiralities are used to construct the optically nonactive metamaterial structure. It turns out that with linearly polarized incident light, the pure electric or magnetic resonance (and accordingly negative permittivity or negative permeability) can be selectively realized by tuning the polarization of incident light for 90°. Alternatively, units with the same chirality can be assembled as a chiralmetamaterial by taking the advantage of the collinear induced electric and magnetic dipoles. It follows that for the circularly polarized incident light, negative refractive index can be realized. These examples demonstrate the unique approach to achieve certain optical properties by assembling chiral building blocks, which could be enlightening in designing metamaterials.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd