1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Assembling optically active and nonactive metamaterials with chiral units
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/2/4/10.1063/1.4773466
1.
1.V. M. Shalaev, Nature Photonics 1, 41 (2007).
http://dx.doi.org/10.1038/nphoton.2006.49
2.
2.D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, Physical Review Letters 84, 4184 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.4184
3.
3.A. Andryieuski, C. Menzel, C. Rockstuhl, R. Malureanu, F. Lederer, and A. Lavrinenko, Physical Review B 82, 235107 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.235107
4.
4.T. Koschny, L. Zhang, and C. M. Soukoulis, Physical Review B 71, 121103R (2005).
http://dx.doi.org/10.1103/PhysRevB.71.121103
5.
5.D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, Science 305, 788 (2004).
http://dx.doi.org/10.1126/science.1096796
6.
6.J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, Physical Review Letters 76, 4773 (1996).
http://dx.doi.org/10.1103/PhysRevLett.76.4773
7.
7.J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, Ieee Transactions on Microwave Theory and Techniques 47, 2075 (1999).
http://dx.doi.org/10.1109/22.798002
8.
8.R. A. Shelby, D. R. Smith, and S. Schultz, Science 292, 77 (2001).
http://dx.doi.org/10.1126/science.1058847
9.
9.V. M. Shalaev, W. S. Cai, U. K. Chettiar, H. K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, Optics Letters 30, 3356 (2005).
http://dx.doi.org/10.1364/OL.30.003356
10.
10.C. M. Soukoulis, M. Kafesaki, and E. N. Economou, Advanced Materials 18, 1941 (2006).
http://dx.doi.org/10.1002/adma.200600106
11.
11.J. F. Zhou, L. Zhang, G. Tuttle, T. Koschny, and C. M. Soukoulis, Physical Review B 73, 041101R (2006).
http://dx.doi.org/10.1103/PhysRevB.73.041101
12.
12.G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, Optics Letters 32, 53 (2007).
http://dx.doi.org/10.1364/OL.32.000053
13.
13.J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, Nature 455, 376 (2008).
http://dx.doi.org/10.1038/nature07247
14.
14.K. Lodewijks, N. Verellen, W. Van Roy, V. Moshchalkov, G. Borghs, and P. Van Dorpe, Applied Physics Letters 98, 091101 (2011).
http://dx.doi.org/10.1063/1.3560444
15.
15.X. Xiong, Z. W. Wang, S. J. Fu, M. Wang, R. W. Peng, X. P. Hao, and C. Sun, Applied Physics Letters 99, 181905 (2011).
http://dx.doi.org/10.1063/1.3656715
16.
16.J. B. Pendry, Physical Review Letters 85, 3966 (2000).
http://dx.doi.org/10.1103/PhysRevLett.85.3966
17.
17.N. Fang, and X. Zhang, Applied Physics Letters 82, 161 (2003).
http://dx.doi.org/10.1063/1.1536712
18.
18.N. Fang, H. Lee, C. Sun, and X. Zhang, Science 308, 534 (2005).
http://dx.doi.org/10.1126/science.1108759
19.
19.J. B. Pendry, D. Schurig, and D. R. Smith, Science 312, 1780 (2006).
http://dx.doi.org/10.1126/science.1125907
20.
20.R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, Science 323, 366 (2009).
http://dx.doi.org/10.1126/science.1166949
21.
21.F. Zhou, Y. J. Bao, W. Cao, C. T. Stuart, J. Q. Gu, W. L. Zhang, and C. Sun, Scientific Reports 1, 78 (2011).
http://dx.doi.org/10.1038/srep00078
22.
22.H. Liu, J. Ng, S. B. Wang, Z. F. Lin, Z. H. Hang, C. T. Chan, and S. N. Zhu, Physical Review Letters 106, 087401 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.087401
23.
23.S. Zhang, W. J. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, Physical Review Letters 95, 137404 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.137404
24.
24.S. M. Xiao, V. P. Drachev, A. V. Kildishev, X. J. Ni, U. K. Chettiar, H. K. Yuan, and V. M. Shalaev, Nature 466, 735 (2010).
http://dx.doi.org/10.1038/nature09278
25.
25.B. Kante, A. de Lustrac, and J. M. Lourtioz, Photonics and Nanostructures-Fundamentals and Applications 8, 112 (2010).
http://dx.doi.org/10.1016/j.photonics.2009.08.001
26.
26.A. Kamli, S. A. Moiseev, and B. C. Sanders, Physical Review Letters 101, 263601 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.263601
27.
27.J. B. Pendry, Science 306, 1353 (2004).
http://dx.doi.org/10.1126/science.1104467
28.
28.X. Xiong, W. H. Sun, Y. J. Bao, M. Wang, R. W. Peng, C. Sun, X. Lu, J. Shao, Z. F. Li, and N. B. Ming, Physical Review B 81, 075119 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.075119
29.
29.S. Zhang, Y. S. Park, J. S. Li, X. C. Lu, W. L. Zhang, and X. Zhang, Physical Review Letters 102, 023901 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.023901
30.
30.E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, Physical Review B 79, 035407 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.035407
31.
31.J. F. Zhou, J. F. Dong, B. N. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, Physical Review B 79, 121104R (2009).
http://dx.doi.org/10.1103/PhysRevB.79.121104
32.
32.B. N. Wang, J. F. Zhou, T. Koschny, and C. M. Soukoulis, Applied Physics Letters 94, 151112 (2009).
http://dx.doi.org/10.1063/1.3120565
33.
33.X. Xiong, W. H. Sun, Y. J. Bao, R. W. Peng, M. Wang, C. Sun, X. Lu, J. Shao, Z. F. Li, and N. B. Ming, Physical Review B 80, 201105R (2009).
http://dx.doi.org/10.1103/PhysRevB.80.201105
34.
34.X. Xiong, X. C. Chen, M. Wang, R. W. Peng, D. J. Shu, and C. Sun, Applied Physics Letters 98, 071901 (2011).
http://dx.doi.org/10.1063/1.3554704
35.
35.J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, Science 325, 1513 (2009).
http://dx.doi.org/10.1126/science.1177031
36.
36.J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, New York, 1999).
37.
37.D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, Physical Review B 65, 195104 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.195104
38.
38.M. A. Ordal, R. J. Bell, R. W. Alexander, L. L. Long, and M. R. Querry, Applied Optics 24, 4493 (1985).
http://dx.doi.org/10.1364/AO.24.004493
39.
39.G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, Optics Letters 31, 1800 (2006).
http://dx.doi.org/10.1364/OL.31.001800
40.
40.S. Wuestner, A. Pusch, K. L. Tsakmakidis, J. M. Hamm, and O. Hess, Physical Review Letters 105, 127401 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.127401
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/4/10.1063/1.4773466
Loading
/content/aip/journal/adva/2/4/10.1063/1.4773466
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/2/4/10.1063/1.4773466
2012-12-28
2014-10-26

Abstract

Metamaterials constructed with chiral units can be either optically active or nonactive depending on the spatial configuration of the building blocks. For a class of chiral units, their effective induced electric and magnetic dipoles, which originate from the induced surface electric current upon illumination of incident light, can be collinear at the resonant frequency. This feature provides significant advantage in designing metamaterials. In this paper we concentrate on several examples. In one scenario, chiral units with opposite chiralities are used to construct the optically nonactive metamaterial structure. It turns out that with linearly polarized incident light, the pure electric or magnetic resonance (and accordingly negative permittivity or negative permeability) can be selectively realized by tuning the polarization of incident light for 90°. Alternatively, units with the same chirality can be assembled as a chiralmetamaterial by taking the advantage of the collinear induced electric and magnetic dipoles. It follows that for the circularly polarized incident light, negative refractive index can be realized. These examples demonstrate the unique approach to achieve certain optical properties by assembling chiral building blocks, which could be enlightening in designing metamaterials.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/2/4/1.4773466.html;jsessionid=cw7jh7krstqg.x-aip-live-03?itemId=/content/aip/journal/adva/2/4/10.1063/1.4773466&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Assembling optically active and nonactive metamaterials with chiral units
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/4/10.1063/1.4773466
10.1063/1.4773466
SEARCH_EXPAND_ITEM