1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Growth of SrTiO3(110) film by oxide molecular beam epitaxy with feedback control
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/2/4/10.1063/1.4773555
1.
1. M. Imada, A. Fujimori, and Y. Tokura, Rev. Mod. Phys. 70, 1039 (1998).
http://dx.doi.org/10.1103/RevModPhys.70.1039
2.
2. A. Tsukazaki, S. Akasaka, K. Nakahara, Y. Ohno, H. Ohno, D. Maryenko, A. Ohtomo, and M. Kawasaki, Nature Mater. 9, 889 (2010).
http://dx.doi.org/10.1038/nmat2874
3.
3. J. R. Arthur, J. Appl. Phys. 39, 4032 (1968).
http://dx.doi.org/10.1063/1.1656901
4.
4. D. G. Schlom and J. S. Harris Jr., MBE Growth of High Tc Superconductors. in: Molecular Beam Epitaxy, edited by R. F. C. Farrow (Noyes, Park Ridge, 1995), pp. 505622.
5.
5. J. N. Eckstein and I. Bozovic, Annu. Rev. Mater. Sci. 25, 679 (1995).
http://dx.doi.org/10.1146/annurev.ms.25.080195.003335
6.
6. D. J. Rogers, P. Bove, and F. H. Teherani, Supercond. Sci. Technol. 12, R75 (1999).
http://dx.doi.org/10.1088/0953-2048/12/6/201
7.
7. J. H. Haeni, C. D. Theis, and D. G. Schlom, J. Electroceram. 4, 385 (2000).
http://dx.doi.org/10.1023/A:1009947517710
8.
8. D. G. Schlom, J. H. Haeni, J. Lettieri, C. D. Theis, W. Tian, J. C. Jiang, and X. Q. Pan, Sci. Eng. B 87, 282 (2001).
http://dx.doi.org/10.1016/S0921-5107(01)00726-7
9.
9. J. N. Eckstein, I. Bozovic, and G. F. Virshup, MRS Bull. 19, 44 (1994).
10.
10. E. S. Hellman and E. H. Hartford, J. Vac. Sci. Technol. B. 12, 1178 (1994).
http://dx.doi.org/10.1116/1.587036
11.
11. C. D. Theisand and D. G. Schlom, J. Vac. Sci. Technol. A. 14, 2677 (1996).
http://dx.doi.org/10.1116/1.580185
12.
12. Y. S. Kim, Namrata Bansal, Carlos Chaparro, Heiko Gross, and Seongshik Oh, J. Vac. Sci. Technol. A. 28(2), 271 (2010).
http://dx.doi.org/10.1116/1.3298880
13.
13. M. Naito, H. Yamamoto, and H. Sato, Physica C. 305, 233 (1998).
http://dx.doi.org/10.1016/S0921-4534(98)00338-4
14.
14. S. A. Chambers, Surf. Sci. Rep. 39, 105 (2000).
http://dx.doi.org/10.1016/S0167-5729(00)00005-4
15.
15. M. P. Warusawithana, C. Cen, C. R. Sleasman, J. C. Woicik, Y. Li, L. F. Kourkoutis, J. A. Klug, H. Li, P. Ryan, L. Wang, M. Bedzyk, D. A. Muller, L. Chen, J. Levy, and D. G. Schlom, Science 324, 367 (2009).
http://dx.doi.org/10.1126/science.1169678
16.
16. J. F. Schooley, W. R. Hosler, and M. L. Cohen, Phys. Rev. Lett. 12, 474 (1964).
http://dx.doi.org/10.1103/PhysRevLett.12.474
17.
17. K. A. Müller and H. Burkard, Phys. Rev. B 19, 3593 (1979).
http://dx.doi.org/10.1103/PhysRevB.19.3593
18.
18. Y. Tokura, Y. Taguchi, Y. Okada, Y. Fujishima, T. Arima, K. Kumagai, and Y. Iye, Phys. Rev. Lett. 70, 2126 (1993).
http://dx.doi.org/10.1103/PhysRevLett.70.2126
19.
19. K. Ueno, S. Nakamura, H. Shimotani, A. Ohtomo, N. Kimura, T. Nojima, H. Aoki, Y. Iwasa, and M. Kawasaki, Nature Mater. 7, 855 (2008).
http://dx.doi.org/10.1038/nmat2298
20.
20. A. Ohtomo, D. A. Muller, J. L. Grazul, and H. Y. Hwang, Nature 419, 378 (2002).
http://dx.doi.org/10.1038/nature00977
21.
21. J. H. Haeni, P. Irvin, W. Chang, R. Uecker, P. Reiche, Y. L. Li, S. Choudhury, W. Tian, M. E. Hawley, B. Craigo, A. K. Tagantsev, X. Q. Pan, S. K. Steiffer, L. Q. Chen, S. W. Kirchoefer, J. Levy, and D. G. Schlom, Nature (London) 430, 758 (2004).
http://dx.doi.org/10.1038/nature02773
22.
22. J. Heber, Nature (London) 459, 28 (2009).
http://dx.doi.org/10.1038/459028a
23.
23. C. M. Brooks, L. Fitting Kourkoutis, T. Heeg, J. Schubert, D. A. Muller, and D. G. Schlom, Appl. Phys. Lett. 94, 162905 (2009).
http://dx.doi.org/10.1063/1.3117365
24.
24. I. C. Infante, J. O. Osso, F. S. anchez, and J. Fontcuberta, Appl. Phys. Lett. 92, 012508 (2008).
http://dx.doi.org/10.1063/1.2828701
25.
25. J. X. Ma, X. F. Liu, T. Lin, G. Y. Gao, J. P. Zhang, W. B. Wu, X. G. Li, and J. Shi, Phys. Rev. B 79, 174424 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.174424
26.
26. H. Akoh, C. Camerlingo, and S. Takada, Appl. Phys. Lett. 56, 1487 (1990).
http://dx.doi.org/10.1063/1.103156
27.
27. Y. Suzuki, H. Y. Hwang, S.-W. Cheong, and R. B. van Dover, Appl. Phys. Lett. 71, 140 (1997).
http://dx.doi.org/10.1063/1.119454
28.
28. Y. Ogimoto, M. Nakamura, N. Takubo, H. Tamaru, M. Izumi, and K. Miyano, Phys. Rev. B 71, 060403 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.060403
29.
29. K. J. Lai, M. Nakamura, W. Kundhikanjana, M. Kawasaki, Y. Tokura, M. A. Kelly, and Zhi-Xun Shen, Science 329, 190 (2010).
http://dx.doi.org/10.1126/science.1189925
30.
30. Y. Mukunoki, N. Nakagawa, T. Susaki, and H. Y. Hwang, Appl. Phys. Lett. 86, 171908 (2005).
http://dx.doi.org/10.1063/1.1920415
31.
31. J. H. Hao, J. Gao, Z. Wang, and D. P. Yu, Appl. Phys. Lett. 87, 131908 (2009).
http://dx.doi.org/10.1063/1.2061859
32.
32. Zhiming Wang, Fang Yang, Zhiqiang Zhang, Yuanyuan Tang, Jiagui Feng, Kehui Wu, Qinlin Guo, and Jiandong Guo, Phys. Rev. B. 83, 155453 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.155453
33.
33. Zhiming Wang, Jiagui Feng, Yang Yang, Yuan Yao, Lin Gu, Fang Yang, Qinlin Guo, and Jiandong Guo, Appl. Phys. Lett. 100, 051602 (2012).
http://dx.doi.org/10.1063/1.3681796
34.
34. J. A. Enterkin, A. K. Subramanian, B. C. Russell, M. R. Castell, K. R. Poeppelmeier, and L. D. Marks, Nature Mater. 9, 245 (2010).
http://dx.doi.org/10.1038/nmat2636
35.
35. Fengmiao Li, Zhiming Wang, Sheng Meng, Yongbao Sun, Jinlong Yang, Qinlin Guo, and Jiandong Guo, Phy. Rev. Lett. 107, 036103 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.036103
36.
36. STM images are taken over different areas on the sample and the statistics indicate the uniformity of the entire surface.
37.
37. A. Ichimiya and P. I. Cohen, Reflection high-energy electron diffraction (Cambridge University Press, 2004).
38.
38. L. M. Peng, Micron 30, 625648 (1998).
http://dx.doi.org/10.1016/S0968-4328(99)00033-5
39.
39. See supplementary material at http://dx.doi.org/10.1063/1.4773555 for the calculations of the intensity of RHEED integral diffraction patterns. [Supplementary Material]
40.
40. S. N. Ruddlesden and P. Popper, Acta Crystallogr. 10, 538 (1957).
http://dx.doi.org/10.1107/S0365110X57001929
41.
41. S. N. Ruddlesden and P. Popper, Acta Crystallogr. 11, 54 (1958).
http://dx.doi.org/10.1107/S0365110X58000128
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/4/10.1063/1.4773555
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) The status of shutter (open/close), the change of Sr concentration on the growing surface in relative to the monophased (4×1) surface (Δ[Sr]), and the intensity of RHEED (01) pattern during the homoepitaxial growth of SrTiO3(110) film. (b)-(e) STM images (unoccupies-states) taken on the surfaces with growth stopped at t0, t1, t2, and t3 as labeled in (a).

Image of FIG. 2.

Click to view

FIG. 2.

(a) and (b) STM images (unoccupies-states) taken on the surfaces with growth stopped at t4 and t5, respectively, as labeled in Fig. 1(a). The insets are the corresponding zoom-in images.

Image of FIG. 3.

Click to view

FIG. 3.

The calculated (red) and (blue) with different θ i s.

Image of FIG. 4.

Click to view

FIG. 4.

(a) I R monitored during the growth with the Sr shutter timing fixed at 34 sec (opening) and 38 sec (closing). (b) I R during the growth with automatic feedback control of the Sr shutter (upper panel) and the recorded corresponding opening time of Sr shutter (lower panel).

Image of FIG. 5.

Click to view

FIG. 5.

(a) and (b) STM images (unoccupied-states) of the substrate and the 22 nm-thick film surfaces, respecively. The insets are the corresponding zoom-in images. (c) The cross-sectional HRTEM image of the homoepitaxial SrTiO3(110) thin film.

Loading

Article metrics loading...

/content/aip/journal/adva/2/4/10.1063/1.4773555
2012-12-20
2014-04-23

Abstract

By controlling the growth of complex oxide films with atomic precision, emergent phenomena and fascinating properties have been discovered, and even been manipulated. With oxide molecular beam epitaxy (OMBE) we grow high-quality SrTiO3(110) films by evaporating Sr and Ti metals with separate controls of the open/close timing of the shutters. The incident electron beam angle of the reflective high energy electron diffraction (RHEED) is adjusted to make the (01) beam sensitive to surface chemical concentration. By monitoring such an intensity, we tune the shutter timing to synchronize the evaporation amount of Sr and Ti in real-time. The intensity is further used as a feedback control signal for automatic growth optimization to fully compensate the possible fluctuation of the source flux rates upon extended growth. A 22 nm-thick film is obtained with the precision of metal cation stoichiometry better than 0.5%.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/2/4/1.4773555.html;jsessionid=f7blpo62k66cd.x-aip-live-03?itemId=/content/aip/journal/adva/2/4/10.1063/1.4773555&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Growth of SrTiO3(110) film by oxide molecular beam epitaxy with feedback control
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/4/10.1063/1.4773555
10.1063/1.4773555
SEARCH_EXPAND_ITEM