Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. M. Imada, A. Fujimori, and Y. Tokura, Rev. Mod. Phys. 70, 1039 (1998).
2. A. Tsukazaki, S. Akasaka, K. Nakahara, Y. Ohno, H. Ohno, D. Maryenko, A. Ohtomo, and M. Kawasaki, Nature Mater. 9, 889 (2010).
3. J. R. Arthur, J. Appl. Phys. 39, 4032 (1968).
4. D. G. Schlom and J. S. Harris Jr., MBE Growth of High Tc Superconductors. in: Molecular Beam Epitaxy, edited by R. F. C. Farrow (Noyes, Park Ridge, 1995), pp. 505622.
5. J. N. Eckstein and I. Bozovic, Annu. Rev. Mater. Sci. 25, 679 (1995).
6. D. J. Rogers, P. Bove, and F. H. Teherani, Supercond. Sci. Technol. 12, R75 (1999).
7. J. H. Haeni, C. D. Theis, and D. G. Schlom, J. Electroceram. 4, 385 (2000).
8. D. G. Schlom, J. H. Haeni, J. Lettieri, C. D. Theis, W. Tian, J. C. Jiang, and X. Q. Pan, Sci. Eng. B 87, 282 (2001).
9. J. N. Eckstein, I. Bozovic, and G. F. Virshup, MRS Bull. 19, 44 (1994).
10. E. S. Hellman and E. H. Hartford, J. Vac. Sci. Technol. B. 12, 1178 (1994).
11. C. D. Theisand and D. G. Schlom, J. Vac. Sci. Technol. A. 14, 2677 (1996).
12. Y. S. Kim, Namrata Bansal, Carlos Chaparro, Heiko Gross, and Seongshik Oh, J. Vac. Sci. Technol. A. 28(2), 271 (2010).
13. M. Naito, H. Yamamoto, and H. Sato, Physica C. 305, 233 (1998).
14. S. A. Chambers, Surf. Sci. Rep. 39, 105 (2000).
15. M. P. Warusawithana, C. Cen, C. R. Sleasman, J. C. Woicik, Y. Li, L. F. Kourkoutis, J. A. Klug, H. Li, P. Ryan, L. Wang, M. Bedzyk, D. A. Muller, L. Chen, J. Levy, and D. G. Schlom, Science 324, 367 (2009).
16. J. F. Schooley, W. R. Hosler, and M. L. Cohen, Phys. Rev. Lett. 12, 474 (1964).
17. K. A. Müller and H. Burkard, Phys. Rev. B 19, 3593 (1979).
18. Y. Tokura, Y. Taguchi, Y. Okada, Y. Fujishima, T. Arima, K. Kumagai, and Y. Iye, Phys. Rev. Lett. 70, 2126 (1993).
19. K. Ueno, S. Nakamura, H. Shimotani, A. Ohtomo, N. Kimura, T. Nojima, H. Aoki, Y. Iwasa, and M. Kawasaki, Nature Mater. 7, 855 (2008).
20. A. Ohtomo, D. A. Muller, J. L. Grazul, and H. Y. Hwang, Nature 419, 378 (2002).
21. J. H. Haeni, P. Irvin, W. Chang, R. Uecker, P. Reiche, Y. L. Li, S. Choudhury, W. Tian, M. E. Hawley, B. Craigo, A. K. Tagantsev, X. Q. Pan, S. K. Steiffer, L. Q. Chen, S. W. Kirchoefer, J. Levy, and D. G. Schlom, Nature (London) 430, 758 (2004).
22. J. Heber, Nature (London) 459, 28 (2009).
23. C. M. Brooks, L. Fitting Kourkoutis, T. Heeg, J. Schubert, D. A. Muller, and D. G. Schlom, Appl. Phys. Lett. 94, 162905 (2009).
24. I. C. Infante, J. O. Osso, F. S. anchez, and J. Fontcuberta, Appl. Phys. Lett. 92, 012508 (2008).
25. J. X. Ma, X. F. Liu, T. Lin, G. Y. Gao, J. P. Zhang, W. B. Wu, X. G. Li, and J. Shi, Phys. Rev. B 79, 174424 (2009).
26. H. Akoh, C. Camerlingo, and S. Takada, Appl. Phys. Lett. 56, 1487 (1990).
27. Y. Suzuki, H. Y. Hwang, S.-W. Cheong, and R. B. van Dover, Appl. Phys. Lett. 71, 140 (1997).
28. Y. Ogimoto, M. Nakamura, N. Takubo, H. Tamaru, M. Izumi, and K. Miyano, Phys. Rev. B 71, 060403 (2005).
29. K. J. Lai, M. Nakamura, W. Kundhikanjana, M. Kawasaki, Y. Tokura, M. A. Kelly, and Zhi-Xun Shen, Science 329, 190 (2010).
30. Y. Mukunoki, N. Nakagawa, T. Susaki, and H. Y. Hwang, Appl. Phys. Lett. 86, 171908 (2005).
31. J. H. Hao, J. Gao, Z. Wang, and D. P. Yu, Appl. Phys. Lett. 87, 131908 (2009).
32. Zhiming Wang, Fang Yang, Zhiqiang Zhang, Yuanyuan Tang, Jiagui Feng, Kehui Wu, Qinlin Guo, and Jiandong Guo, Phys. Rev. B. 83, 155453 (2011).
33. Zhiming Wang, Jiagui Feng, Yang Yang, Yuan Yao, Lin Gu, Fang Yang, Qinlin Guo, and Jiandong Guo, Appl. Phys. Lett. 100, 051602 (2012).
34. J. A. Enterkin, A. K. Subramanian, B. C. Russell, M. R. Castell, K. R. Poeppelmeier, and L. D. Marks, Nature Mater. 9, 245 (2010).
35. Fengmiao Li, Zhiming Wang, Sheng Meng, Yongbao Sun, Jinlong Yang, Qinlin Guo, and Jiandong Guo, Phy. Rev. Lett. 107, 036103 (2011).
36. STM images are taken over different areas on the sample and the statistics indicate the uniformity of the entire surface.
37. A. Ichimiya and P. I. Cohen, Reflection high-energy electron diffraction (Cambridge University Press, 2004).
38. L. M. Peng, Micron 30, 625648 (1998).
39. See supplementary material at for the calculations of the intensity of RHEED integral diffraction patterns. [Supplementary Material]
40. S. N. Ruddlesden and P. Popper, Acta Crystallogr. 10, 538 (1957).
41. S. N. Ruddlesden and P. Popper, Acta Crystallogr. 11, 54 (1958).

Data & Media loading...


Article metrics loading...



By controlling the growth of complex oxide films with atomic precision, emergent phenomena and fascinating properties have been discovered, and even been manipulated. With oxide molecular beam epitaxy (OMBE) we grow high-quality SrTiO3(110) films by evaporating Sr and Ti metals with separate controls of the open/close timing of the shutters. The incident electron beam angle of the reflective high energy electron diffraction (RHEED) is adjusted to make the (01) beam sensitive to surface chemical concentration. By monitoring such an intensity, we tune the shutter timing to synchronize the evaporation amount of Sr and Ti in real-time. The intensity is further used as a feedback control signal for automatic growth optimization to fully compensate the possible fluctuation of the source flux rates upon extended growth. A 22 nm-thick film is obtained with the precision of metal cation stoichiometry better than 0.5%.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd