1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Implicit phonon shifts and thermodynamical properties of rigid carbon nanotube bunches
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/2/4/10.1063/1.4774030
1.
1.K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004).
http://dx.doi.org/10.1126/science.1102896
2.
2.R. J. Chen, S. Bangsaruntip, K. A. Drouvalakis, N. W. S. Kam, M. Shim, Y. Li, W. Kim, P. J. Utz, and H. Dai, Proc. Natl. Acad. Sci. U.S.A. 100, 4984 (2003).
http://dx.doi.org/10.1073/pnas.0837064100
3.
3.S. Iijima, Nature 354, 56 (1991).
http://dx.doi.org/10.1038/354056a0
4.
4.V. K. Jindal, Shuchi Gupta, and K. Dharamvir, arXiv:cond-mat/0008382 [cond-mat.mtrl-sci].
5.
5. V. K. Jindal and J. Kalus, J. Phys. C 16, 3061 (1983);
http://dx.doi.org/10.1088/0022-3719/16/16/011
5.V. K. Jindal and J. Kalus, Phys. stat. sol. (b) 133(1), 89 (1986).
http://dx.doi.org/10.1002/pssb.2221330110
6.
6.J. Tang, L.-C. Qin, T. Sasaki, M. Yudasaka, A. Matsushita, and S. Iijima, Phys. Rev. Lett. 85, 1887 (2000).
http://dx.doi.org/10.1103/PhysRevLett.85.1887
7.
7.M. J. Peters, L. E. McNeil, J. Ping Lu, and D. Kahn, Phys. Rev. B 61, 5939 (2000).
http://dx.doi.org/10.1103/PhysRevB.61.5939
8.
8.A. Merlen, N. Bendiab, P. Toulemonde, A. Aouizerat, A. San Miguel, J. L. Sauvajol, G. Montagnac, H. Cardon, and P. Petit, Phys. Rev. B 72(3), 035409 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.035409
9.
9.M. Yao, Z. Wang, B. Liu, Y. Zou, S. Yu, W. Lin, Y. Hou, S. Pan, M. Jin, B. Zou, T. Cui, G. Zou, and B. Sundqvist, Phys. Rev. B 78(20), 205411 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.205411
10.
10.J. C. Charlier, Ph. Lambin, and T. W. Ebbesen, Phys. Rev. B 54(12), R8377R8380 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.R8377
11.
11.T. Yildirim, O. Gulseren, C. Kilic, and S. Ciraci, Phys. Rev. B 62, 12648 (2000).
http://dx.doi.org/10.1103/PhysRevB.62.12648
12.
12.M. H. F. Sluiter, V. Kumar, and Y. Kawazoe, Phys. Rev. B 65, 161402 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.161402
13.
13.S. Reich, C. Thomsen, and P. Ordejón, Phys. Rev. B 65, 153407 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.153407
14.
14.P. Tangney, R. B. Capaz, C. D. Spataru, M. L. Cohen, and S. G. Louie, Nano Lett. 5(11), 2268 (2005).
http://dx.doi.org/10.1021/nl051637p
15.
15.I. H. Choi, P. Y. Yu, P. Tagney, and S. G. Louie, Phys. Status Solidi 244(1), (2007).
http://dx.doi.org/10.1002/pssb.200672576
16.
16.Shuchi Gupta, K. Dharamvir, and V. K. Jindal, Phys. Rev. B 72, 165428 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.165428
17.
17.M. S. Dresselhaus and P. C. Eklund, Advances in Physics 49(6), 705 (2000).
http://dx.doi.org/10.1080/000187300413184
18.
18.J. –L. Sauvajol, E. Anglaret, S. Rols, and L. Alvarez, Carbon 40, 1697 (2002).
http://dx.doi.org/10.1016/S0008-6223(02)00010-6
19.
19.V. K. Jindal, K. Dharamvir, and Sarbpreet Singh, Int. J. Mod. Phys. B 14, 51 (2000).
http://dx.doi.org/10.1142/S0217979200000066
20.
20.A. I. Kitaigorodski, Molecular Crystals and Molecules (Academic Press, New York, 1973).
21.
21.A. A. Maradudin, P. A. Flinn, and R. A. Coldwell Horsfall, Ann. Phys. (U.S.A.) 15, 6533 (1961).
22.
22.R. A. Cowley, Rep. Progr. Phys. 31, 123 (1968).
http://dx.doi.org/10.1088/0034-4885/31/1/303
23.
23.V. N. Popov, V. E. Van Doren, and M. Balkanski, Solid State Commun. 114, 395 (2000).
http://dx.doi.org/10.1016/S0038-1098(00)00070-3
24.
24.Yutaka Maniwa, Ryuji Fujiwara, Hiroshi Kira, Hideki Tou, Hiromichi Kataura, Shinzo Suzuki, Yohji Achiba, Eiji Nishibori, Masaki Takata, Makoto Sakata, Akihiko Fujiwara, and Hiroyoshi Suematsu, Phys. Rev. B 64, 241402R (2001).
http://dx.doi.org/10.1103/PhysRevB.64.241402
25.
25.H. D. Li, K. T. Yue, Z. L. Lian, Y. Zhan, L. X. Zhou, S. L. Zhang, Z. J. Shi, Z. N. Gu, B. B. Liu, R. S. Yang, H. B. Yang, G. T. Zou, Y. Zhang, and S. Iijima, Appl. Phys. Lett. 76, 2053 (2000).
http://dx.doi.org/10.1063/1.126252
26.
26.N. R. Raravikar, P. Keblinski, A. M. Rao, M. S. Dresselhaus, L. S. Schadler, and P. M. Ajayan, Phys. Rev. B 66, 235424 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.235424
27.
27.L. Henrard, E. Hernandez, P. Bernier, and A. Rubio, Phys. Rev. B 60, 8521 (1999).
http://dx.doi.org/10.1103/PhysRevB.60.R8521
28.
28.F. Huang, K. T. Yue, P. H. Tan, S. Zhang, Z. J. Shi, X. Zhou, and Z. N. Gu, Journal of Appl. Phys. 84, 4022 (1998).
http://dx.doi.org/10.1063/1.368585
29.
29.P. V. Huong, R. Cavagnat, P. M. Ajayan, and O. Stephan, Phys. Rev. B 51, 10048 (1995).
http://dx.doi.org/10.1103/PhysRevB.51.10048
30.
30.J. C. Lasjaunias, K. Biljakovic, Z. Benes, J. E. Fischer, and P. Monceau, Phys. Rev. B 65, 113409 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.113409
31.
31.V. N. Popov, Phys. Rev. B 66, 153408 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.153408
32.
32.J. Hone, B. Batlogg, Z. Benes, A. T. Johnson, and J. E. Fischer, Science 289, 1730 (2000).
http://dx.doi.org/10.1126/science.289.5485.1730
33.
33.J. Hone, M. C. Lianguno, M. J. Biercuk, A. T. Johnson, B. Batlogg, Z. Benes, and J. E. Fischer, Appl. Phys. A 74, 339 (2002).
http://dx.doi.org/10.1007/s003390201277
34.
34. J. Tersoff, Phys. Rev. B 37, 6991 (1988);
http://dx.doi.org/10.1103/PhysRevB.37.6991
34.J. Tersoff, Phys. Rev. Lett. 61, 2879 (1988).
http://dx.doi.org/10.1103/PhysRevLett.61.2879
35.
35.J. Tersoff and R. S. Ruoff, Phys. Rev. Lett. 73, 676 (1994).
http://dx.doi.org/10.1103/PhysRevLett.73.676
36.
36.M. J. Lopez, A. Rubio, J. A. Alonso, L.-C. Qin, and S. Iijima, Phys. Rev. Lett. 86, 3056 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.3056
37.
37.S. A. Chesnokov, V. A. Nalimova, A. G. Rinzler, R. E. Smalley, and J. E. Fischer, Phys. Rev. Lett. 82, 343 (1999).
http://dx.doi.org/10.1103/PhysRevLett.82.343
38.
38.U. D. Venkateswaran, A. M. Rao, E. Richter, M. Menon, A. Rinzler, R. E. Smalley, and P. C. Eklund, Phys. Rev. B 59, 10928 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.10928
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/4/10.1063/1.4774030
Loading
/content/aip/journal/adva/2/4/10.1063/1.4774030
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/2/4/10.1063/1.4774030
2012-12-28
2014-08-28

Abstract

We calculate phonon shifts of external modes of a bunch of carbon nanotubes. The bunches form a 2-dimensional hexagonal arrangement of lattice with long molecules of carbon nanotubes. A simple model based on atom-atom potential has been used to calculate the implicit anharmonicity in the phonons of carbon nanotube bundles (also called ropes or bunches) having rigid tubes, with the assumption that under hydrostatic pressure only the inter-tube distance in the bunch varies. Various bulk and thermodynamic properties like thermal expansion,bulk modulus and the Gruneisen constants and external phonon shifts which naturally enter into the calculation are also described and compared with the available data. The specific heat capacity has also been calculated.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/2/4/1.4774030.html;jsessionid=2gwumq8o410dc.x-aip-live-02?itemId=/content/aip/journal/adva/2/4/10.1063/1.4774030&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Implicit phonon shifts and thermodynamical properties of rigid carbon nanotube bunches
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/4/10.1063/1.4774030
10.1063/1.4774030
SEARCH_EXPAND_ITEM