Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. E. Schrödinger, Ann. Phys. (Leipzig) 82, 265 (1927).
2. W. Pauli, Handbuch der Physik, Band XXIV, Teil 1 (Springer, Berlin, 1933), pp. 83272;
2.reprinted in Handbuch der Physik, vol. 5 (Springer, Berlin, 1958), Part 1;
2.translated into English in General Principles of Quantum Mechanics (Springer, Berlin, 1980).
3. S. T. Epstein, J. Chem. Phys. 63, 3573 (1975).
4. R. F. W. Bader, J. Chem. Phys. 73, 2871 (1980).
5. A. S. Bamzai and B. M. Deb, Rev. Mod. Phys. 53, 95 (1981).
6. O. H. Nielsen and R. M. Martin, Phys. Rev. Lett. 50, 697 (1983).
7. O. H. Nielsen and R. M. Martin, Phys. Rev. B 32, 3780 (1985).
8. N. O. Folland, Phys. Rev. B 34, 8296 (1986).
9. N. O. Folland, Phys. Rev. B 34, 8305 (1986).
10. M. J. Godfrey, Phys. Rev. B 37, 10176 (1988).
11. A. Filippetti and V. Fiorentini, Phys. Rev. B 61, 8433 (2000).
12. A. Tachibana, J. Chem. Phys. 115, 3497 (2001).
13. A. M. Pendás, J. Chem. Phys. 117, 965 (2002).
14. C. L. Rogers and A. M. Rappe, Phys. Rev. B 65, 224117 (2002).
15. A. Tachibana, Int. J. Quantum Chem. 100, 981 (2004).
16. A. Tachibana, J. Mol. Model. 11, 301 (2005).
17. S. Morante, G. C. Rossi, and M. Testa, J. Chem. Phys. 125, 034101 (2006).
18. J. Tao, G. Vignale, and I. V. Tokatly, Phys. Rev. Lett. 100, 206405 (2008).
19. P. W. Ayers and S. Jenkins, J. Chem. Phys. 130, 154104 (2009).
20. A. Tachibana, J. Mol. Struct. (THEOCHEM) 943, 138 (2010).
21. S. Jenkins, S. R. Kirk, A. Guevara-García, P. W. Ayers, E. Echegaray, and A. Toro-Labbe, Chem. Phys. Lett. 510, 18 (2011).
22. A. Tachibana, Frontiers in Theoretical Chemistry: Concepts and Methods: A tribute to Professor B. M. Deb, Eds. by Swapan K. Ghosh and Pratim K. Chattaraj (Taylor & Francis / CRC Press, 2012), in press.
23. A. Guevara-García, E. Echegaray, A. Toro-Labbe, S. Jenkins, S. R. Kirk, and P. W. Ayers, J. Chem. Phys. 134, 234106 (2011).
24. P. Szarek and A. Tachibana, J. Mol. Model. 13, 651 (2007).
25. P. Szarek, Y. Sueda, and A. Tachibana, J. Chem. Phys. 129, 094102 (2008).
26. P. Szarek, K. Urakami, C. Zhou, H. Cheng, and A. Tachibana, J. Chem. Phys. 130, 084111 (2009).
27. K. Ichikawa, T. Myoraku, A. Fukushima, Y. Ishihara, R. Isaki, T. Takeguchi, and A. Tachibana, J. Mol. Struct. (THEOCHEM) 915, 1 (2009).
28. K. Ichikawa and A. Tachibana, Phys. Rev. A 80, 062507 (2009).
29. K. Ichikawa, A. Wagatsuma, M. Kusumoto, and A. Tachibana, J. Mol. Struct. (THEOCHEM) 951, 49 (2010).
30. K. Ichikawa, Y. Ikeda, A. Wagatsuma, K. Watanabe, P. Szarek, and A. Tachibana, Int. J. Quant. Chem. 111, 3548 (2011).
31. K. Ichikawa, A. Wagatsuma, Y. I. Kurokawa, S. Sakaki, and A. Tachibana, Theor. Chem. Acc. 130, 237 (2011).
32. K. Ichikawa, A. Wagatsuma, P. Szarek, C. Zhou, H. Cheng, and A. Tachibana, Theor. Chem. Acc. 130, 531 (2011).
33. M. A. McAdon and W. A. Goddard III, Phys. Rev. Lett. 55, 2563 (1985).
34. R. Rousseau and D. Marx, Chem. Eur. J. 6, 2982 (2000).<2982::AID-CHEM2982>3.0.CO;2-S
35. M. E. Alikhani and S. Shaik, Theor. Chem. Acc. 116, 390 (2006).
36. C. Gatti, P. Fantucci, and G. Pacchioni, Theor. Chim. Acta. 72, 433 (1987).
37. G. I. Bersuker, C. Peng, and J. E. Boggs, J. Phys. Chem. 97, 9323 (1993).
38. D. Yepes, S. R. Kirk, S. Jenkins, and A. Restrepo, J. Mol. Model 18, 4171 (2012).
39. Gaussian 09, Revision A.1, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.
40. X. Gonze, B. Amadon, P. M. Anglade, J. M. Beuken, F. Bottin, P. Boulanger, F. Bruneval, D. Caliste, R. Caracas, M. Cote, T. Deutsch, L. Genovese, Ph. Ghosez, M. Giantomassi, S. Goedecker, D. R. Hamann, P. Hermet, F. Jollet, G. Jomard, S. Leroux, M. Mancini, S. Mazevet, M. J. T. Oliveira, G. Onida, Y. Pouillon, T. Rangel, G. M. Rignanese, D. Sangalli, R. Shaltaf, M. Torrent, M. J. Verstraete, G. Zerah, and J. W. Zwanziger, Computer Phys. Commun. 180, 2582 (2009).
41. X. Gonze, G. M. Rignanese, M. Verstraete, J. M. Beuken, Y. Pouillon, R. Caracas, F. Jollet, M. Torrent, G. Zerah, M. Mikami, Ph. Ghosez, M. Veithen, J. Y. Raty, V. Olevano, F. Bruneval, L. Reining, R. Godby, G. Onida, D. R. Hamann, and D. C. Allan, Zeit. Kristallogr. 220, 558 (2005).
42. M. Senami, K. Ichikawa, K. Doi, P. Szarek, K. Nakamura, and A. Tachibana, Molecular Regional DFT program package, ver. 3. Tachibana Lab, Kyoto University, Kyoto (2008).
43. W. L. DeLano, The PyMOL Molecular Graphics System. (2008) DeLano Scientific LLC, Palo Alto, CA, USA.
44. G. Gardet, F. Rogemond, and H. Chermette, J. Chem. Phys. 105, 9933 (1996).
45. R. Krishnan, J. S. Binkley, R. Seeger, and J. A. Pople, J. Chem. Phys. 72, 650 (1980).
46. M. J. Frisch, J. A. Pople, and J. S. Binkley, J. Chem. Phys. 80, 3265 (1984).
47. E. Florez and P. Fuentealba, Int. J. Quant. Chem. 109, 1080 (2009).
48. I. A. Solov'yov, A. V. Solov'yov, and W. Greiner, Phys. Rev. A 65, 053203 (2002).
49. N. Troullier and J. L. Martins, Phys. Rev. B 43, 1993 (1991).
50. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
51. See Supplementary Material at for the detailed data. [Supplementary Material]
52. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).
53. A. D. Becke, J. Chem. Phys 98, 5648 (1993).

Data & Media loading...


Article metrics loading...



We study the electronic structure of small lithium clusters Li n (n = 2 ∼ 8) using the electronic stress tensor. We find that the three eigenvalues of the electronic stress tensor of the Li clusters are negative and degenerate, just like the stress tensor of liquid. This leads us to propose that we may characterize a metallic bond in terms of the electronic stress tensor. Our proposal is that in addition to the negativity of the three eigenvalues of the electronic stress tensor, their degeneracy characterizes some aspects of the metallic nature of chemical bonding. To quantify the degree of degeneracy, we use the differential eigenvalues of the electronic stress tensor. By comparing the Li clusters and hydrocarbon molecules, we show that the sign of the largest eigenvalue and the differential eigenvalues could be useful indices to evaluate the metallicity or covalency of a chemical bond.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd