1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Theoretical study of lithium clusters by electronic stress tensor
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/2/4/10.1063/1.4774037
1.
1. E. Schrödinger, Ann. Phys. (Leipzig) 82, 265 (1927).
2.
2. W. Pauli, Handbuch der Physik, Band XXIV, Teil 1 (Springer, Berlin, 1933), pp. 83272;
2.reprinted in Handbuch der Physik, vol. 5 (Springer, Berlin, 1958), Part 1;
2.translated into English in General Principles of Quantum Mechanics (Springer, Berlin, 1980).
3.
3. S. T. Epstein, J. Chem. Phys. 63, 3573 (1975).
http://dx.doi.org/10.1063/1.431797
4.
4. R. F. W. Bader, J. Chem. Phys. 73, 2871 (1980).
http://dx.doi.org/10.1063/1.440457
5.
5. A. S. Bamzai and B. M. Deb, Rev. Mod. Phys. 53, 95 (1981).
http://dx.doi.org/10.1103/RevModPhys.53.95
6.
6. O. H. Nielsen and R. M. Martin, Phys. Rev. Lett. 50, 697 (1983).
http://dx.doi.org/10.1103/PhysRevLett.50.697
7.
7. O. H. Nielsen and R. M. Martin, Phys. Rev. B 32, 3780 (1985).
http://dx.doi.org/10.1103/PhysRevB.32.3780
8.
8. N. O. Folland, Phys. Rev. B 34, 8296 (1986).
http://dx.doi.org/10.1103/PhysRevB.34.8296
9.
9. N. O. Folland, Phys. Rev. B 34, 8305 (1986).
http://dx.doi.org/10.1103/PhysRevB.34.8305
10.
10. M. J. Godfrey, Phys. Rev. B 37, 10176 (1988).
http://dx.doi.org/10.1103/PhysRevB.37.10176
11.
11. A. Filippetti and V. Fiorentini, Phys. Rev. B 61, 8433 (2000).
http://dx.doi.org/10.1103/PhysRevB.61.8433
12.
12. A. Tachibana, J. Chem. Phys. 115, 3497 (2001).
http://dx.doi.org/10.1063/1.1384012
13.
13. A. M. Pendás, J. Chem. Phys. 117, 965 (2002).
http://dx.doi.org/10.1063/1.1484385
14.
14. C. L. Rogers and A. M. Rappe, Phys. Rev. B 65, 224117 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.224117
15.
15. A. Tachibana, Int. J. Quantum Chem. 100, 981 (2004).
http://dx.doi.org/10.1002/qua.20258
16.
16. A. Tachibana, J. Mol. Model. 11, 301 (2005).
http://dx.doi.org/10.1007/s00894-005-0260-y
17.
17. S. Morante, G. C. Rossi, and M. Testa, J. Chem. Phys. 125, 034101 (2006).
http://dx.doi.org/10.1063/1.2214719
18.
18. J. Tao, G. Vignale, and I. V. Tokatly, Phys. Rev. Lett. 100, 206405 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.206405
19.
19. P. W. Ayers and S. Jenkins, J. Chem. Phys. 130, 154104 (2009).
http://dx.doi.org/10.1063/1.3098140
20.
20. A. Tachibana, J. Mol. Struct. (THEOCHEM) 943, 138 (2010).
http://dx.doi.org/10.1016/j.theochem.2009.11.018
21.
21. S. Jenkins, S. R. Kirk, A. Guevara-García, P. W. Ayers, E. Echegaray, and A. Toro-Labbe, Chem. Phys. Lett. 510, 18 (2011).
http://dx.doi.org/10.1016/j.cplett.2011.05.023
22.
22. A. Tachibana, Frontiers in Theoretical Chemistry: Concepts and Methods: A tribute to Professor B. M. Deb, Eds. by Swapan K. Ghosh and Pratim K. Chattaraj (Taylor & Francis / CRC Press, 2012), in press.
23.
23. A. Guevara-García, E. Echegaray, A. Toro-Labbe, S. Jenkins, S. R. Kirk, and P. W. Ayers, J. Chem. Phys. 134, 234106 (2011).
http://dx.doi.org/10.1063/1.3599935
24.
24. P. Szarek and A. Tachibana, J. Mol. Model. 13, 651 (2007).
http://dx.doi.org/10.1007/s00894-007-0215-6
25.
25. P. Szarek, Y. Sueda, and A. Tachibana, J. Chem. Phys. 129, 094102 (2008).
http://dx.doi.org/10.1063/1.2973634
26.
26. P. Szarek, K. Urakami, C. Zhou, H. Cheng, and A. Tachibana, J. Chem. Phys. 130, 084111 (2009).
http://dx.doi.org/10.1063/1.3072369
27.
27. K. Ichikawa, T. Myoraku, A. Fukushima, Y. Ishihara, R. Isaki, T. Takeguchi, and A. Tachibana, J. Mol. Struct. (THEOCHEM) 915, 1 (2009).
http://dx.doi.org/10.1016/j.theochem.2009.08.026
28.
28. K. Ichikawa and A. Tachibana, Phys. Rev. A 80, 062507 (2009).
http://dx.doi.org/10.1103/PhysRevA.80.062507
29.
29. K. Ichikawa, A. Wagatsuma, M. Kusumoto, and A. Tachibana, J. Mol. Struct. (THEOCHEM) 951, 49 (2010).
http://dx.doi.org/10.1016/j.theochem.2010.04.007
30.
30. K. Ichikawa, Y. Ikeda, A. Wagatsuma, K. Watanabe, P. Szarek, and A. Tachibana, Int. J. Quant. Chem. 111, 3548 (2011).
31.
31. K. Ichikawa, A. Wagatsuma, Y. I. Kurokawa, S. Sakaki, and A. Tachibana, Theor. Chem. Acc. 130, 237 (2011).
http://dx.doi.org/10.1007/s00214-011-0966-0
32.
32. K. Ichikawa, A. Wagatsuma, P. Szarek, C. Zhou, H. Cheng, and A. Tachibana, Theor. Chem. Acc. 130, 531 (2011).
http://dx.doi.org/10.1007/s00214-011-1044-3
33.
33. M. A. McAdon and W. A. Goddard III, Phys. Rev. Lett. 55, 2563 (1985).
http://dx.doi.org/10.1103/PhysRevLett.55.2563
34.
34. R. Rousseau and D. Marx, Chem. Eur. J. 6, 2982 (2000).
http://dx.doi.org/10.1002/1521-3765(20000818)6:16<2982::AID-CHEM2982>3.0.CO;2-S
35.
35. M. E. Alikhani and S. Shaik, Theor. Chem. Acc. 116, 390 (2006).
http://dx.doi.org/10.1007/s00214-006-0081-9
36.
36. C. Gatti, P. Fantucci, and G. Pacchioni, Theor. Chim. Acta. 72, 433 (1987).
http://dx.doi.org/10.1007/BF01192234
37.
37. G. I. Bersuker, C. Peng, and J. E. Boggs, J. Phys. Chem. 97, 9323 (1993).
http://dx.doi.org/10.1021/j100139a012
38.
38. D. Yepes, S. R. Kirk, S. Jenkins, and A. Restrepo, J. Mol. Model 18, 4171 (2012).
http://dx.doi.org/10.1007/s00894-012-1406-3
39.
39. Gaussian 09, Revision A.1, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.
40.
40. X. Gonze, B. Amadon, P. M. Anglade, J. M. Beuken, F. Bottin, P. Boulanger, F. Bruneval, D. Caliste, R. Caracas, M. Cote, T. Deutsch, L. Genovese, Ph. Ghosez, M. Giantomassi, S. Goedecker, D. R. Hamann, P. Hermet, F. Jollet, G. Jomard, S. Leroux, M. Mancini, S. Mazevet, M. J. T. Oliveira, G. Onida, Y. Pouillon, T. Rangel, G. M. Rignanese, D. Sangalli, R. Shaltaf, M. Torrent, M. J. Verstraete, G. Zerah, and J. W. Zwanziger, Computer Phys. Commun. 180, 2582 (2009).
http://dx.doi.org/10.1016/j.cpc.2009.07.007
41.
41. X. Gonze, G. M. Rignanese, M. Verstraete, J. M. Beuken, Y. Pouillon, R. Caracas, F. Jollet, M. Torrent, G. Zerah, M. Mikami, Ph. Ghosez, M. Veithen, J. Y. Raty, V. Olevano, F. Bruneval, L. Reining, R. Godby, G. Onida, D. R. Hamann, and D. C. Allan, Zeit. Kristallogr. 220, 558 (2005).
http://dx.doi.org/10.1524/zkri.220.5.558.65066
42.
42. M. Senami, K. Ichikawa, K. Doi, P. Szarek, K. Nakamura, and A. Tachibana, Molecular Regional DFT program package, ver. 3. Tachibana Lab, Kyoto University, Kyoto (2008).
43.
43. W. L. DeLano, The PyMOL Molecular Graphics System. (2008) DeLano Scientific LLC, Palo Alto, CA, USA. http://www.pymol.org
44.
44. G. Gardet, F. Rogemond, and H. Chermette, J. Chem. Phys. 105, 9933 (1996).
http://dx.doi.org/10.1063/1.472826
45.
45. R. Krishnan, J. S. Binkley, R. Seeger, and J. A. Pople, J. Chem. Phys. 72, 650 (1980).
http://dx.doi.org/10.1063/1.438955
46.
46. M. J. Frisch, J. A. Pople, and J. S. Binkley, J. Chem. Phys. 80, 3265 (1984).
http://dx.doi.org/10.1063/1.447079
47.
47. E. Florez and P. Fuentealba, Int. J. Quant. Chem. 109, 1080 (2009).
http://dx.doi.org/10.1002/qua.21906
48.
48. I. A. Solov'yov, A. V. Solov'yov, and W. Greiner, Phys. Rev. A 65, 053203 (2002).
http://dx.doi.org/10.1103/PhysRevA.65.053203
49.
49. N. Troullier and J. L. Martins, Phys. Rev. B 43, 1993 (1991).
http://dx.doi.org/10.1103/PhysRevB.43.1993
50.
50. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
51.
51. See Supplementary Material at http://dx.doi.org/10.1063/1.4774037 for the detailed data. [Supplementary Material]
52.
52. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).
http://dx.doi.org/10.1103/PhysRevB.37.785
53.
53. A. D. Becke, J. Chem. Phys 98, 5648 (1993).
http://dx.doi.org/10.1063/1.464913
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/4/10.1063/1.4774037
Loading
/content/aip/journal/adva/2/4/10.1063/1.4774037
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/2/4/10.1063/1.4774037
2012-12-28
2014-09-02

Abstract

We study the electronic structure of small lithium clusters Li n (n = 2 ∼ 8) using the electronic stress tensor. We find that the three eigenvalues of the electronic stress tensor of the Li clusters are negative and degenerate, just like the stress tensor of liquid. This leads us to propose that we may characterize a metallic bond in terms of the electronic stress tensor. Our proposal is that in addition to the negativity of the three eigenvalues of the electronic stress tensor, their degeneracy characterizes some aspects of the metallic nature of chemical bonding. To quantify the degree of degeneracy, we use the differential eigenvalues of the electronic stress tensor. By comparing the Li clusters and hydrocarbon molecules, we show that the sign of the largest eigenvalue and the differential eigenvalues could be useful indices to evaluate the metallicity or covalency of a chemical bond.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/2/4/1.4774037.html;jsessionid=197jhoi4vsal2.x-aip-live-03?itemId=/content/aip/journal/adva/2/4/10.1063/1.4774037&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Theoretical study of lithium clusters by electronic stress tensor
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/4/10.1063/1.4774037
10.1063/1.4774037
SEARCH_EXPAND_ITEM