NOTICE: Scitation Maintenance Sunday, March 1, 2015.

Scitation users may experience brief connectivity issues on Sunday, March 1, 2015 between 12:00 AM and 7:00 AM EST due to planned network maintenance.

Thank you for your patience during this process.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
Theoretical study of lithium clusters by electronic stress tensor
Rent this article for
Access full text Article
1. E. Schrödinger, Ann. Phys. (Leipzig) 82, 265 (1927).
2. W. Pauli, Handbuch der Physik, Band XXIV, Teil 1 (Springer, Berlin, 1933), pp. 83272;
2.reprinted in Handbuch der Physik, vol. 5 (Springer, Berlin, 1958), Part 1;
2.translated into English in General Principles of Quantum Mechanics (Springer, Berlin, 1980).
3. S. T. Epstein, J. Chem. Phys. 63, 3573 (1975).
4. R. F. W. Bader, J. Chem. Phys. 73, 2871 (1980).
5. A. S. Bamzai and B. M. Deb, Rev. Mod. Phys. 53, 95 (1981).
6. O. H. Nielsen and R. M. Martin, Phys. Rev. Lett. 50, 697 (1983).
7. O. H. Nielsen and R. M. Martin, Phys. Rev. B 32, 3780 (1985).
8. N. O. Folland, Phys. Rev. B 34, 8296 (1986).
9. N. O. Folland, Phys. Rev. B 34, 8305 (1986).
10. M. J. Godfrey, Phys. Rev. B 37, 10176 (1988).
11. A. Filippetti and V. Fiorentini, Phys. Rev. B 61, 8433 (2000).
12. A. Tachibana, J. Chem. Phys. 115, 3497 (2001).
13. A. M. Pendás, J. Chem. Phys. 117, 965 (2002).
14. C. L. Rogers and A. M. Rappe, Phys. Rev. B 65, 224117 (2002).
15. A. Tachibana, Int. J. Quantum Chem. 100, 981 (2004).
16. A. Tachibana, J. Mol. Model. 11, 301 (2005).
17. S. Morante, G. C. Rossi, and M. Testa, J. Chem. Phys. 125, 034101 (2006).
18. J. Tao, G. Vignale, and I. V. Tokatly, Phys. Rev. Lett. 100, 206405 (2008).
19. P. W. Ayers and S. Jenkins, J. Chem. Phys. 130, 154104 (2009).
20. A. Tachibana, J. Mol. Struct. (THEOCHEM) 943, 138 (2010).
21. S. Jenkins, S. R. Kirk, A. Guevara-García, P. W. Ayers, E. Echegaray, and A. Toro-Labbe, Chem. Phys. Lett. 510, 18 (2011).
22. A. Tachibana, Frontiers in Theoretical Chemistry: Concepts and Methods: A tribute to Professor B. M. Deb, Eds. by Swapan K. Ghosh and Pratim K. Chattaraj (Taylor & Francis / CRC Press, 2012), in press.
23. A. Guevara-García, E. Echegaray, A. Toro-Labbe, S. Jenkins, S. R. Kirk, and P. W. Ayers, J. Chem. Phys. 134, 234106 (2011).
24. P. Szarek and A. Tachibana, J. Mol. Model. 13, 651 (2007).
25. P. Szarek, Y. Sueda, and A. Tachibana, J. Chem. Phys. 129, 094102 (2008).
26. P. Szarek, K. Urakami, C. Zhou, H. Cheng, and A. Tachibana, J. Chem. Phys. 130, 084111 (2009).
27. K. Ichikawa, T. Myoraku, A. Fukushima, Y. Ishihara, R. Isaki, T. Takeguchi, and A. Tachibana, J. Mol. Struct. (THEOCHEM) 915, 1 (2009).
28. K. Ichikawa and A. Tachibana, Phys. Rev. A 80, 062507 (2009).
29. K. Ichikawa, A. Wagatsuma, M. Kusumoto, and A. Tachibana, J. Mol. Struct. (THEOCHEM) 951, 49 (2010).
30. K. Ichikawa, Y. Ikeda, A. Wagatsuma, K. Watanabe, P. Szarek, and A. Tachibana, Int. J. Quant. Chem. 111, 3548 (2011).
31. K. Ichikawa, A. Wagatsuma, Y. I. Kurokawa, S. Sakaki, and A. Tachibana, Theor. Chem. Acc. 130, 237 (2011).
32. K. Ichikawa, A. Wagatsuma, P. Szarek, C. Zhou, H. Cheng, and A. Tachibana, Theor. Chem. Acc. 130, 531 (2011).
33. M. A. McAdon and W. A. Goddard III, Phys. Rev. Lett. 55, 2563 (1985).
34. R. Rousseau and D. Marx, Chem. Eur. J. 6, 2982 (2000).<2982::AID-CHEM2982>3.0.CO;2-S
35. M. E. Alikhani and S. Shaik, Theor. Chem. Acc. 116, 390 (2006).
36. C. Gatti, P. Fantucci, and G. Pacchioni, Theor. Chim. Acta. 72, 433 (1987).
37. G. I. Bersuker, C. Peng, and J. E. Boggs, J. Phys. Chem. 97, 9323 (1993).
38. D. Yepes, S. R. Kirk, S. Jenkins, and A. Restrepo, J. Mol. Model 18, 4171 (2012).
39. Gaussian 09, Revision A.1, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.
40. X. Gonze, B. Amadon, P. M. Anglade, J. M. Beuken, F. Bottin, P. Boulanger, F. Bruneval, D. Caliste, R. Caracas, M. Cote, T. Deutsch, L. Genovese, Ph. Ghosez, M. Giantomassi, S. Goedecker, D. R. Hamann, P. Hermet, F. Jollet, G. Jomard, S. Leroux, M. Mancini, S. Mazevet, M. J. T. Oliveira, G. Onida, Y. Pouillon, T. Rangel, G. M. Rignanese, D. Sangalli, R. Shaltaf, M. Torrent, M. J. Verstraete, G. Zerah, and J. W. Zwanziger, Computer Phys. Commun. 180, 2582 (2009).
41. X. Gonze, G. M. Rignanese, M. Verstraete, J. M. Beuken, Y. Pouillon, R. Caracas, F. Jollet, M. Torrent, G. Zerah, M. Mikami, Ph. Ghosez, M. Veithen, J. Y. Raty, V. Olevano, F. Bruneval, L. Reining, R. Godby, G. Onida, D. R. Hamann, and D. C. Allan, Zeit. Kristallogr. 220, 558 (2005).
42. M. Senami, K. Ichikawa, K. Doi, P. Szarek, K. Nakamura, and A. Tachibana, Molecular Regional DFT program package, ver. 3. Tachibana Lab, Kyoto University, Kyoto (2008).
43. W. L. DeLano, The PyMOL Molecular Graphics System. (2008) DeLano Scientific LLC, Palo Alto, CA, USA.
44. G. Gardet, F. Rogemond, and H. Chermette, J. Chem. Phys. 105, 9933 (1996).
45. R. Krishnan, J. S. Binkley, R. Seeger, and J. A. Pople, J. Chem. Phys. 72, 650 (1980).
46. M. J. Frisch, J. A. Pople, and J. S. Binkley, J. Chem. Phys. 80, 3265 (1984).
47. E. Florez and P. Fuentealba, Int. J. Quant. Chem. 109, 1080 (2009).
48. I. A. Solov'yov, A. V. Solov'yov, and W. Greiner, Phys. Rev. A 65, 053203 (2002).
49. N. Troullier and J. L. Martins, Phys. Rev. B 43, 1993 (1991).
50. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
51. See Supplementary Material at for the detailed data. [Supplementary Material]
52. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).
53. A. D. Becke, J. Chem. Phys 98, 5648 (1993).

Data & Media loading...


Article metrics loading...



We study the electronic structure of small lithium clusters Li n (n = 2 ∼ 8) using the electronic stress tensor. We find that the three eigenvalues of the electronic stress tensor of the Li clusters are negative and degenerate, just like the stress tensor of liquid. This leads us to propose that we may characterize a metallic bond in terms of the electronic stress tensor. Our proposal is that in addition to the negativity of the three eigenvalues of the electronic stress tensor, their degeneracy characterizes some aspects of the metallic nature of chemical bonding. To quantify the degree of degeneracy, we use the differential eigenvalues of the electronic stress tensor. By comparing the Li clusters and hydrocarbon molecules, we show that the sign of the largest eigenvalue and the differential eigenvalues could be useful indices to evaluate the metallicity or covalency of a chemical bond.


Full text loading...

This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Theoretical study of lithium clusters by electronic stress tensor