Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/3/1/10.1063/1.4775352
1.
1. S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnar, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, Science 294, 1488 (2001).
http://dx.doi.org/10.1126/science.1065389
2.
2. G. M. Muller, J. Walowski, M. Djordjevic, G.-X. Miao, A. Gupta, A. V. Ramos, K. Gehrke, V. Moshnyaga, K. Samwer, J. Schmalhorst, A. Thomas, A. Hutten, G. Reiss, J. S. Moodera, and M. Munzenberg, Nat. Mater. 8, 56 (2009).
http://dx.doi.org/10.1038/nmat2341
3.
3. R. A. de Groot, F. M. Mueller, P. G. van Engen, and K. H. J. Buschow, Phys. Rev. Lett. 50, 2024 (1983).
http://dx.doi.org/10.1103/PhysRevLett.50.2024
4.
4. J.-H. Park, E. Vescovo, H.-J. Kim, C. Kwon, R. Ramesh, and T. Venkatesan, Nature (London) 392, 794 (1998).
http://dx.doi.org/10.1038/33883
5.
5. K.-I. Kobayashi, T. Kimura, H. Sawada, K. Terakura, and Y. Tokura, Nature (London) 395, 677 (1998).
http://dx.doi.org/10.1038/26427
6.
6. R. Nechache, C. Harnagea, A. Pignolet, F. Normandin, T. Veres, L.-P. Carignan, and D. Menard, Appl. Phys. Lett. 89, 102902 (2006).
http://dx.doi.org/10.1063/1.2346258
7.
7. B. Aissa, R. Nechache, D. Therriault, F. Rosei, and M. Nedil, Appl. Phys. Lett. 99, 183505 (2011).
http://dx.doi.org/10.1063/1.3657528
8.
8. H. Boschker, J. Kautz, E. P. Houwman, W. Siemons, D. H. A. Blank, M. Huijben, G. Koster, A. Vailionis, and G. Rijnders, Phys. Rev. Lett. 109, 157207 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.157207
9.
9. A. J. Hauser, J. R. Soliz, M. Dixit, R. E. A. Williams, M. A. Susner, B. Peters, L. M. Mier, T. L. Gustafson, M. D. Sumption, H. L. Fraser, P. M. Woodward, and F. Y. Yang, Phys. Rev. B 85, 161201R (2012).
http://dx.doi.org/10.1103/PhysRevB.85.161201
10.
10. D. Serrate, J. M. de Teresa, and M. R. Ibarra, J. Phys. Conden. Matter 19, 023201 (2007); and references therein.
http://dx.doi.org/10.1088/0953-8984/19/2/023201
11.
11. M. Opel, J. Phys. D 45, 033001 (2012); and references therein.
http://dx.doi.org/10.1088/0022-3727/45/3/033001
12.
12. P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964);
http://dx.doi.org/10.1103/PhysRev.136.B864
12.W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
http://dx.doi.org/10.1103/PhysRev.140.A1133
13.
13. G. Kresse, and J. Hafner, Phys. Rev. B 47, 558 (1993);
http://dx.doi.org/10.1103/PhysRevB.47.558
13.G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.11169
14.
14. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
15.
15. A. H. MacDonald, W. E. Pickett, and D. D. Koelling, J. Phys. C 13, 2675 (1980).
http://dx.doi.org/10.1088/0022-3719/13/14/009
16.
16. H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).
http://dx.doi.org/10.1103/PhysRevB.13.5188
17.
17. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. M. Teller, and E. Teller, J. Chem. Phys. 21, 1087 (1953).
http://dx.doi.org/10.1063/1.1699114
18.
18. K. Binder and D. W. Heermann, Monte Carlo Simulation in Statistical Physics (Springer, Berlin, 2002).
19.
19. P. Baettig and N. A. Spaldin, Appl. Phys. Lett. 86, 012505 (2005).
http://dx.doi.org/10.1063/1.1843290
20.
20. P. Baettig, C. Ederer, and N. A. Spaldin, Phys. Rev. B 72, 214105 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.214105
21.
21. B.-G. Liu, Phys. Rev. B 67, 172411 (2003).
http://dx.doi.org/10.1103/PhysRevB.67.172411
22.
22. W.-H. Xie, Y.-Q. Xu, B.-G. Liu, and D. G. Pettifor, Phys. Rev. Lett. 91, 037204 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.037204
23.
23. B.-G. Liu, Half-metallic Alloys - Fundamentals and Applications, in Lecture Notes in Physics Vol. 676, I. Galanakis and P. H. Dederichs, Eds. (Springer, Berlin, 2005), pp. 267291.
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/1/10.1063/1.4775352
Loading
/content/aip/journal/adva/3/1/10.1063/1.4775352
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/3/1/10.1063/1.4775352
2013-01-02
2016-09-28

Abstract

We predict through our first-principles calculations that four double perovskite oxides of Bi2ABO6 (AB = FeMo, MnMo, MnOs, CrOs) are half-metallic ferrimagnets. Our calculated results shows that the four optimized structures have negative formation energy, from -0.42 to -0.26 eV per formula unit, which implies that they could probably be realized. In the case of Bi2FeMoO6, the half-metallic gap and Curie temperature are predicted to reach to 0.71 eV and 650 K, respectively, which indicates that high spin polarization could be kept at high temperatures far beyond room temperature. It is believed that some of them could be synthesized soon and would prove useful for spintronic applications.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/1/1.4775352.html;jsessionid=PM2tLFmTsYnJreRQW6vXLfVO.x-aip-live-02?itemId=/content/aip/journal/adva/3/1/10.1063/1.4775352&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/3/1/10.1063/1.4775352&pageURL=http://scitation.aip.org/content/aip/journal/adva/3/1/10.1063/1.4775352'
Right1,Right2,Right3,