Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnar, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, Science 294, 1488 (2001).
2. G. M. Muller, J. Walowski, M. Djordjevic, G.-X. Miao, A. Gupta, A. V. Ramos, K. Gehrke, V. Moshnyaga, K. Samwer, J. Schmalhorst, A. Thomas, A. Hutten, G. Reiss, J. S. Moodera, and M. Munzenberg, Nat. Mater. 8, 56 (2009).
3. R. A. de Groot, F. M. Mueller, P. G. van Engen, and K. H. J. Buschow, Phys. Rev. Lett. 50, 2024 (1983).
4. J.-H. Park, E. Vescovo, H.-J. Kim, C. Kwon, R. Ramesh, and T. Venkatesan, Nature (London) 392, 794 (1998).
5. K.-I. Kobayashi, T. Kimura, H. Sawada, K. Terakura, and Y. Tokura, Nature (London) 395, 677 (1998).
6. R. Nechache, C. Harnagea, A. Pignolet, F. Normandin, T. Veres, L.-P. Carignan, and D. Menard, Appl. Phys. Lett. 89, 102902 (2006).
7. B. Aissa, R. Nechache, D. Therriault, F. Rosei, and M. Nedil, Appl. Phys. Lett. 99, 183505 (2011).
8. H. Boschker, J. Kautz, E. P. Houwman, W. Siemons, D. H. A. Blank, M. Huijben, G. Koster, A. Vailionis, and G. Rijnders, Phys. Rev. Lett. 109, 157207 (2012).
9. A. J. Hauser, J. R. Soliz, M. Dixit, R. E. A. Williams, M. A. Susner, B. Peters, L. M. Mier, T. L. Gustafson, M. D. Sumption, H. L. Fraser, P. M. Woodward, and F. Y. Yang, Phys. Rev. B 85, 161201R (2012).
10. D. Serrate, J. M. de Teresa, and M. R. Ibarra, J. Phys. Conden. Matter 19, 023201 (2007); and references therein.
11. M. Opel, J. Phys. D 45, 033001 (2012); and references therein.
12. P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964);
12.W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
13. G. Kresse, and J. Hafner, Phys. Rev. B 47, 558 (1993);
13.G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169 (1996).
14. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
15. A. H. MacDonald, W. E. Pickett, and D. D. Koelling, J. Phys. C 13, 2675 (1980).
16. H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).
17. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. M. Teller, and E. Teller, J. Chem. Phys. 21, 1087 (1953).
18. K. Binder and D. W. Heermann, Monte Carlo Simulation in Statistical Physics (Springer, Berlin, 2002).
19. P. Baettig and N. A. Spaldin, Appl. Phys. Lett. 86, 012505 (2005).
20. P. Baettig, C. Ederer, and N. A. Spaldin, Phys. Rev. B 72, 214105 (2005).
21. B.-G. Liu, Phys. Rev. B 67, 172411 (2003).
22. W.-H. Xie, Y.-Q. Xu, B.-G. Liu, and D. G. Pettifor, Phys. Rev. Lett. 91, 037204 (2003).
23. B.-G. Liu, Half-metallic Alloys - Fundamentals and Applications, in Lecture Notes in Physics Vol. 676, I. Galanakis and P. H. Dederichs, Eds. (Springer, Berlin, 2005), pp. 267291.

Data & Media loading...


Article metrics loading...



We predict through our first-principles calculations that four double perovskite oxides of Bi2ABO6 (AB = FeMo, MnMo, MnOs, CrOs) are half-metallic ferrimagnets. Our calculated results shows that the four optimized structures have negative formation energy, from -0.42 to -0.26 eV per formula unit, which implies that they could probably be realized. In the case of Bi2FeMoO6, the half-metallic gap and Curie temperature are predicted to reach to 0.71 eV and 650 K, respectively, which indicates that high spin polarization could be kept at high temperatures far beyond room temperature. It is believed that some of them could be synthesized soon and would prove useful for spintronic applications.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd