Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. S. Ju, A. Facchetti, Y. Xuan, J. Liu, F. Ishikawa, P. Ye, C. Zhou, T. J. Marks, and D. B. Janes, Nature Nanotechnology 2, 378384 (2007).
2. S. Ju, J. Li, J. Liu, P.-C. Chen, Y.-G. Ha, F. Ishikawa, C. Zhou, A. Facchetti, D. B. Janes, and T. J. Marks, Nano Lett. 8, 9971004 (2008).
3. E. N. Dattoli, Q. Wan, W. Guo, Y. Chen, X. Pan, and W. Lu, Nano Lett. 7, 24632469 (2007).
4. L. Hu, H. S. Kim, J.-Y. Lee, P. Peumans, and Y. Cui, ACS Nano. 4, 29552963 (2010).
5. T. Lim, S.-J. Ahn, M. Suh, O.-K. Kwon, M Meyyappan, and S. Ju, Nanotechnology 22, 405203 (2011).
6. M. C. McAlpine, R. S. Friedman, S. Jin, S. K. H. Lin, W. U. Wang, and C. M. Lieber, Nano Lett. 3, 15311535 (2003).
7. H. Yan, H. S. Choe, S. W. Nam, Y. Hu, S. Das, J. F. Klemic, J. C. Ellenbogen, and C. M. Lieber, Nature 470, 240244 (2011).
8. B. C. Paul, R. Tu, S. Fujita, M. Okajima, T. H. Lee, and Y. Nishi, IEEE Trans. Electron Devices 54, 16371644 (2007).
9. J.-M. Choi, J. Lee, D. K. Hwang, J. H. Kim, S. Im, and E. Kim, Appl. Phys. Lett. 88, 043508 (2006).
10. H. S. Bae and S. Im, Thin Solid Films 469–470, 7579 (2004).
11. Y. Miura, T. Ogura, T. Hachida, Y. Nishizaki, T. Yamashita, T. Shima, and M. Kimura, Jpn. J. Appl. Phys. 49, 03CA01 (2010).
12. S. Kim, P. D. Carpenter, R. K. Jean, H. Chen, C. Zhou, S. Ju, and D. B. Janes, ACS Nano 6, 73527361 (2012).
13. H. Kind, H. Yan, B. Messer, M. Law, and P. Yang, Adv. Mater. 14, 158160 (2002).<158::AID-ADMA158>3.0.CO;2-W
14. C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, Nano Lett. 7, 10031009 (2007).
15. I. Tanaka, F. Oba, K. Tatsumi, M. Kunisu, M. Nakano, and H. Adachi, Materials Transactions 43, 14261429 (2002).
16. S. Lany and A. Zunger, PRL. 98, 045501 (2007).
17. J.-S. Park, J. K. Jeong, H.-J. Chung, Y.-G. Mo, and H. D. Kim, Appl. Phys. Lett. 92, 072104 (2008).
18. S. Song, W.-K. Hong, S.-S. Kwon, and T. Lee, Appl. Phys. Lett. 92, 263109 (2008).
19. S. Ju, D. B. Janes, G. Lu, A. Facchetti, and T. J. Marks, Appl. Phys. Lett. 89, 193506 (2006).
20. W. I. Park, J. S. Kim, G.-C. Yia, M. H. Bae, and H.-J. Lee, Appl. Phys. Lett. 85, 50525054 (2004).
21. P.-C. Chang, Z. Fan, C.-J. Chien, D. Stichtenoth, C. Ronnig, and J. G. Lu, Appl. Phys. Lett. 89, 133113 (2006).

Data & Media loading...


Article metrics loading...



In this study, the sensitivity of oxide nanowire transistors under red (R, 470 nm), green (G, 530 nm), and blue (B, 625 nm) light illumination was investigated. As the wavelength of light illuminating the nanowire channel region became shorter, a negative shift of threshold voltage, degradation of subthreshold slope, and increase of on-current were observed. This phenomenon can be explained in terms of photo-induced holes, creating interfacial traps between the gate dielectric and nanowire channel or reacting with oxygen ions on the surface of the nanowires. Thus, the attempt to minimize characteristic changes due to all RGB light sources was performed by employing ultraviolet–ozone treatment and passivation process. As a result, we could successfully fabricate oxide nanowire transistors providing high optical reliability which has broadened the possibilities for applying it to transparent and/or flexible pixel operation circuitry for displays with high optical reliability.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd