1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Red-green-blue light sensitivity of oxide nanowire transistors for transparent display applications
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/3/1/10.1063/1.4789405
1.
1. S. Ju, A. Facchetti, Y. Xuan, J. Liu, F. Ishikawa, P. Ye, C. Zhou, T. J. Marks, and D. B. Janes, Nature Nanotechnology 2, 378384 (2007).
http://dx.doi.org/10.1038/nnano.2007.151
2.
2. S. Ju, J. Li, J. Liu, P.-C. Chen, Y.-G. Ha, F. Ishikawa, C. Zhou, A. Facchetti, D. B. Janes, and T. J. Marks, Nano Lett. 8, 9971004 (2008).
http://dx.doi.org/10.1021/nl072538+
3.
3. E. N. Dattoli, Q. Wan, W. Guo, Y. Chen, X. Pan, and W. Lu, Nano Lett. 7, 24632469 (2007).
http://dx.doi.org/10.1021/nl0712217
4.
4. L. Hu, H. S. Kim, J.-Y. Lee, P. Peumans, and Y. Cui, ACS Nano. 4, 29552963 (2010).
http://dx.doi.org/10.1021/nn1005232
5.
5. T. Lim, S.-J. Ahn, M. Suh, O.-K. Kwon, M Meyyappan, and S. Ju, Nanotechnology 22, 405203 (2011).
http://dx.doi.org/10.1088/0957-4484/22/40/405203
6.
6. M. C. McAlpine, R. S. Friedman, S. Jin, S. K. H. Lin, W. U. Wang, and C. M. Lieber, Nano Lett. 3, 15311535 (2003).
http://dx.doi.org/10.1021/nl0346427
7.
7. H. Yan, H. S. Choe, S. W. Nam, Y. Hu, S. Das, J. F. Klemic, J. C. Ellenbogen, and C. M. Lieber, Nature 470, 240244 (2011).
http://dx.doi.org/10.1038/nature09749
8.
8. B. C. Paul, R. Tu, S. Fujita, M. Okajima, T. H. Lee, and Y. Nishi, IEEE Trans. Electron Devices 54, 16371644 (2007).
http://dx.doi.org/10.1109/TED.2007.899397
9.
9. J.-M. Choi, J. Lee, D. K. Hwang, J. H. Kim, S. Im, and E. Kim, Appl. Phys. Lett. 88, 043508 (2006).
http://dx.doi.org/10.1063/1.2168493
10.
10. H. S. Bae and S. Im, Thin Solid Films 469–470, 7579 (2004).
http://dx.doi.org/10.1016/j.tsf.2004.06.196
11.
11. Y. Miura, T. Ogura, T. Hachida, Y. Nishizaki, T. Yamashita, T. Shima, and M. Kimura, Jpn. J. Appl. Phys. 49, 03CA01 (2010).
http://dx.doi.org/10.1143/JJAP.49.03CA01
12.
12. S. Kim, P. D. Carpenter, R. K. Jean, H. Chen, C. Zhou, S. Ju, and D. B. Janes, ACS Nano 6, 73527361 (2012).
http://dx.doi.org/10.1021/nn302484c
13.
13. H. Kind, H. Yan, B. Messer, M. Law, and P. Yang, Adv. Mater. 14, 158160 (2002).
http://dx.doi.org/10.1002/1521-4095(20020116)14:2<158::AID-ADMA158>3.0.CO;2-W
14.
14. C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, Nano Lett. 7, 10031009 (2007).
http://dx.doi.org/10.1021/nl070111x
15.
15. I. Tanaka, F. Oba, K. Tatsumi, M. Kunisu, M. Nakano, and H. Adachi, Materials Transactions 43, 14261429 (2002).
http://dx.doi.org/10.2320/matertrans.43.1426
16.
16. S. Lany and A. Zunger, PRL. 98, 045501 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.045501
17.
17. J.-S. Park, J. K. Jeong, H.-J. Chung, Y.-G. Mo, and H. D. Kim, Appl. Phys. Lett. 92, 072104 (2008).
http://dx.doi.org/10.1063/1.2838380
18.
18. S. Song, W.-K. Hong, S.-S. Kwon, and T. Lee, Appl. Phys. Lett. 92, 263109 (2008).
http://dx.doi.org/10.1063/1.2955512
19.
19. S. Ju, D. B. Janes, G. Lu, A. Facchetti, and T. J. Marks, Appl. Phys. Lett. 89, 193506 (2006).
http://dx.doi.org/10.1063/1.2378445
20.
20. W. I. Park, J. S. Kim, G.-C. Yia, M. H. Bae, and H.-J. Lee, Appl. Phys. Lett. 85, 50525054 (2004).
http://dx.doi.org/10.1063/1.1821648
21.
21. P.-C. Chang, Z. Fan, C.-J. Chien, D. Stichtenoth, C. Ronnig, and J. G. Lu, Appl. Phys. Lett. 89, 133113 (2006).
http://dx.doi.org/10.1063/1.2357013
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/1/10.1063/1.4789405
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) FE-SEM images of SnO2, In2O3 and ZnO nanowires grown on SiO2/Si substrates. The scale bar is 1 μm. (b) Cross-sectional view of SnO2, In2O3 and ZnO nanowire transistors. (c) Top-view FE-SEM images of single SnO2, In2O3 and ZnO nanowire regions. The scale bar is 2 μm.

Image of FIG. 2.

Click to view

FIG. 2.

(a) The spectrum of the employed red, green, and blue LEDs. (b) Schematic of red, green, blue light illumination on SnO2, In2O3 and ZnO nanowire transistors.

Image of FIG. 3.

Click to view

FIG. 3.

Log scale I dsV gs characteristics of the representative (a) SnO2, (b) In2O3, and (c) ZnO nanowire transistors under dark, red, green, and blue light illumination.

Image of FIG. 4.

Click to view

FIG. 4.

The change and standard deviation of Vth for the representative SnO2, In2O3 and ZnO nanowire transistors under blue light illumination.

Image of FIG. 5.

Click to view

FIG. 5.

I dsV gs relationships from measured data and MEDICI simulations with parameters corresponding to ‘best-fit’ curves for (a) SnO2, (b) ZnO, and (c) In2O3 nanowire transistors. The solid lines are the measured data and the scattered plots are the simulation data.

Image of FIG. 6.

Click to view

FIG. 6.

Log scale I dsV gs characteristics of SnO2 nanowire transistor after UVO treatment under dark, red, green, and blue light illumination.

Image of FIG. 7.

Click to view

FIG. 7.

Time variation of Vth under dark, red, green, and blue light illumination after UVO treatment (5 min) and SiO2 passivation (100 nm).

Tables

Generic image for table

Click to view

Table I.

Representative characteristics of SnO2, ZnO and In2O3 nanowire transistors under dark, red (625 nm), green (530 nm), and blue (470 nm) light illumination.

Generic image for table

Click to view

Table II.

Best-fit parameter values obtained from the MEDICI Simulation of SnO2, ZnO and In2O3 nanowire transistors under dark blue (470 nm) light illumination.

Loading

Article metrics loading...

/content/aip/journal/adva/3/1/10.1063/1.4789405
2013-01-16
2014-04-20

Abstract

In this study, the sensitivity of oxide nanowire transistors under red (R, 470 nm), green (G, 530 nm), and blue (B, 625 nm) light illumination was investigated. As the wavelength of light illuminating the nanowire channel region became shorter, a negative shift of threshold voltage, degradation of subthreshold slope, and increase of on-current were observed. This phenomenon can be explained in terms of photo-induced holes, creating interfacial traps between the gate dielectric and nanowire channel or reacting with oxygen ions on the surface of the nanowires. Thus, the attempt to minimize characteristic changes due to all RGB light sources was performed by employing ultraviolet–ozone treatment and passivation process. As a result, we could successfully fabricate oxide nanowire transistors providing high optical reliability which has broadened the possibilities for applying it to transparent and/or flexible pixel operation circuitry for displays with high optical reliability.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/1/1.4789405.html;jsessionid=7jssgch3popnq.x-aip-live-03?itemId=/content/aip/journal/adva/3/1/10.1063/1.4789405&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Red-green-blue light sensitivity of oxide nanowire transistors for transparent display applications
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/1/10.1063/1.4789405
10.1063/1.4789405
SEARCH_EXPAND_ITEM