Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/3/1/10.1063/1.4789408
1.
1. J. M. D Coey, M. Viret, and S. von Molnar, Adv. Phys. 58, 571 (2009).
http://dx.doi.org/10.1080/00018730903363184
2.
2. C. Zener, Physical Review 82, 403 (1951).
http://dx.doi.org/10.1103/PhysRev.82.403
3.
3. W. Prellier, M. P. Singh, and P. Murugavel, J. Phys. Cond. Mater. 17, R803 (2005).
http://dx.doi.org/10.1088/0953-8984/17/30/R01
4.
4. T. Goto, T. Kimura, G. Lawes, A. P. Ramirez, and Y. Tokura, Phys. Rev. Lett. 92, 257201 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.257201
5.
5. R. Schmidt, J. Ventura, E. Langenberg, N. M. Nemes, C. Munuera, M. Varela, M. García-Hernández, C. Léon, and J. Santamaría, Phys. Rev. B 86, 035113 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.035113
6.
6. E. Langenberg, I. Fina, J. Ventura, B. Noheda, M. Varela, and J. Fontcuberta, Phys. Rev. B 86, 085108 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.085108
7.
7. S. M. Bhagat, S. E. Lofland, P. H. Kim, D. C. Schmadel, C. Kwon, R. Ramesh, and S. D. Tyagi, J. Appl. Phys. 81, 5157 (1997).
http://dx.doi.org/10.1063/1.365154
8.
8. A. Schwartz, M. Scheffler, and S. M. Anlage, Phys. Rev. B 61, R870 (2000).
http://dx.doi.org/10.1103/PhysRevB.61.R870
9.
9. H. Qin, J. Hu, B. Li, Y. Hao, J. Chen, and M. Jiang, J. Magn. Magn. Mater. 320, 2770 (2008).
http://dx.doi.org/10.1016/j.jmmm.2008.06.011
10.
10. A. Rebello and R. Mahendiran, Euro. Phys. Lett. 86, 27004 (2009);
http://dx.doi.org/10.1209/0295-5075/86/27004
10.A. Rebello and R. Mahendiran, Appl. Phys. Lett. 96, 032502 (2010).
http://dx.doi.org/10.1063/1.3293292
11.
11. V. B. Naik and R. Mahendiran, J. Appl. Phys. Lett. 110, 053915 (2011).
http://dx.doi.org/10.1063/1.3631074
12.
12. V. Y. Ivanov, A. A. Mukhin, A. S. Prokhorov, and A. A. Balbashov, Phys. Stat. Sol. B 236, 445 (2003).
http://dx.doi.org/10.1002/pssb.200301700
13.
13. J. G. Cheng, J. S. Zhou, J. B. Goodenough, Y. T. Su, Y. Sui, and Y. Ren, Phys. Rev. B 84, 104415 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.104415
14.
14. F. Tsui, M. C. Smoak, T. K. Nath, and C. B. Eom, Appl. Phys. Lett. 76, 2421 (2000).
http://dx.doi.org/10.1063/1.126363
15.
15. K. Yoshii, J. Solid State Chem. 159, 204 (2000);
http://dx.doi.org/10.1006/jssc.2000.9152
15.K. Yoshii, Appl. Phys. Lett. 99, 142501 (2011).
http://dx.doi.org/10.1063/1.3644473
16.
16. J.-H. Lee, J. K. Jeong, J. H. Park, M. A. Oak, H. M. Jang, J. Y. Son, and J. F. Scott, Phys. Rev. Lett. 107, 117201 (2012).
http://dx.doi.org/10.1103/PhysRevLett.107.117201
17.
17. F. Hong, Z. Cheng, and Z. Wang, Appl. Phys. Lett. 99, 192503 (2011).
http://dx.doi.org/10.1063/1.3659897
18.
18. X. Z. Yu, M. Uchida, Y. Onose, J. P. He, Y. Kaneko, T. Asaka, K. Kimoto, Y. Matsui, T. Arima, and Y. Tokura, J. Magn. Magn. Mater. 302, 391 (2002).
http://dx.doi.org/10.1016/j.jmmm.2005.09.034
19.
19. H. Y. Hwang, S. -W. Cheong, N. P. Ong, and B. Batlogg, Phys. Rev. Lett. 77, 2041 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.2041
20.
20. L. V. Panina, K. Mori, T. Uchiyama, and M. Noda, IEEE Trans. Magnetics. 31, 1249 (1995).
http://dx.doi.org/10.1109/20.364815
21.
21. J. Wang, G. Liu, G. Nie, and Y. Du, J. Magn. Magn. Mater. 280, 316 (2004).
http://dx.doi.org/10.1016/j.jmmm.2004.03.029
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/1/10.1063/1.4789408
Loading
/content/aip/journal/adva/3/1/10.1063/1.4789408
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/3/1/10.1063/1.4789408
2013-01-16
2016-12-07

Abstract

We report frequency dependent (f = 0.1 to 5 MHz) electrical resistivity in Sm0.1La0.6Sr0.3MnO3 in superimposed dc magnetic fields (H = 0–1 kOe). Resistive) and reactive (ρ) components of the complex resistivity (ρ = ρ+iρ) were measured simultaneously. With increasing f, both ρ and ρ′′ increase abruptly at the onset of ferromagnetic transition (T c = 348 K) and exhibit an anomaly at T * ≈ 147 K ≪ T c in H = 0 kOe. The observed features in ρ and ρ′′ are depressed with increasing H leading to 35% magnetoresistance for ΔH = 300 Oe and f = 3 MHz. It is suggested that the frequency dependent magnetotransport is dominated by the field and frequency dependences of the ac permeability.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/1/1.4789408.html;jsessionid=Gx_PB8wUy_RnyqtwJBM_8lqc.x-aip-live-06?itemId=/content/aip/journal/adva/3/1/10.1063/1.4789408&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/3/1/10.1063/1.4789408&pageURL=http://scitation.aip.org/content/aip/journal/adva/3/1/10.1063/1.4789408'
Right1,Right2,Right3,