1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Edge effect enhanced electron field emission in top assembled reduced graphene oxide assisted by amorphous CNT-coated carbon cloth substrate
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/3/1/10.1063/1.4789409
1.
1. A. K. Geim and K. S. Novoselov, Nat. Mater. 6, 183 (2007).
http://dx.doi.org/10.1038/nmat1849
2.
2. A. K. Geim, Science 19, 1530 (2009).
http://dx.doi.org/10.1126/science.1158877
3.
3. A. H. C. Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81(1), 109 (2009).
http://dx.doi.org/10.1103/RevModPhys.81.109
4.
4. A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, Nat. Nanotechnol. 3, 210 (2008).
http://dx.doi.org/10.1038/nnano.2008.67
5.
5. Z. S. Wu, S. Pei, W. Ren, D. Tang, L. Gao, B. Liu, F. Li, C. Liu, and H. M. Cheng, Adv. Mater. 21, 1756 (2009)
http://dx.doi.org/10.1002/adma.200802560
6.
6. M. Qian, T. Feng, H. Ding, L. Lin, H. Li, Y. Chen, and Z. Sun, Nanotechnology 20, 425702 (2009).
http://dx.doi.org/10.1088/0957-4484/20/42/425702
7.
7. G. Eda, H. E. Unalan, N. Rupesinghe, G. A. J Amaratunga, and M. Chhowalla, 2008 Appl. Phys. Lett. 93, 233502 (2008).
http://dx.doi.org/10.1063/1.3028339
8.
8. Jun Li, Jiangtao Chen, Baomin Luo, Xingbin Yan, and Qunji Xue, AIP Advances 2, 022101 (2012).
http://dx.doi.org/10.1063/1.3702588
9.
9. P. Blake, P. D. Brimicombe, R. Nair, T. J. Booth, D. Jiang, F. Schedin, L. A. Ponomarenko, S. V. Morozov, H. F. Gleeson, E. W. Hill, A. K. Geim, and K. S. Novoselov, Nano Lett. 8(6), 1704.
http://dx.doi.org/10.1021/nl080649i
10.
10. F. Schedin, A. K. Geim, S. V. Morozov, E. W Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, Nat. Mater. 6, 652 (2007).
http://dx.doi.org/10.1038/nmat1967
11.
11. K. Zhang, L. L. Zhang, X. S. Zhao, and J. Wu, Chem. Mater. 22, 1392 (2010).
http://dx.doi.org/10.1021/cm902876u
12.
12. Y. K. Kim and D. H. Min, Langmuir 25(19), 11302 (2009).
http://dx.doi.org/10.1021/la9029744
13.
13. X. Li, H. Zhu, K. Wang, A. Cao, J. Wei, C. Li, Y. Jia, Z. Li, X. Li, and D. Wu, Adv. Mater. 22, 2743 (2010).
http://dx.doi.org/10.1002/adma.200904383
14.
14. L. J. Cote, F. Kim, and J. Huang, J. Am. Chem. Soc. 131(3), 1043 (2009).
http://dx.doi.org/10.1021/ja806262m
15.
15. W. S. Hummers and R. E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958).
http://dx.doi.org/10.1021/ja01539a017
16.
16. S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Rouff, Carbon. 45, 1558 (2007).
http://dx.doi.org/10.1016/j.carbon.2007.02.034
17.
17. V. Lee, L. Whittaker, C. Jaye, K. M. Baroudi, D. A. Fischer, and S. Banerjee, Chem. Mater. 21, 3905 (2009).
http://dx.doi.org/10.1021/cm901554p
18.
18. D. Li, M. B. Muller, S. Gilje, R. B. Kaner, and G. G. Wallace, Nat. Nanotechnol. 3, 101 (2008).
http://dx.doi.org/10.1038/nnano.2007.451
19.
19. H. Yamaguchi, K. Murakami, G. Eda, T. Fujita, P. Guan, W. Wang, C. Gong, J. Boisse, S. Miller, M. Acik, K. Cho, Y. J. Chabal, M. Chen, F. Wakaya, M. Takai, and M. Chhowalla, ACS Nano. 5(6), 4945 (2011).
http://dx.doi.org/10.1021/nn201043a
20.
20. E. Stratakis, G. Eda, H. Yamaguchi, E. Kymakis, C. Fotakis, and M. Chhowalla, Nanoscale. Advance Article DOI:10.1039/C2NR30622K (2012).
http://dx.doi.org/10.1039/C2NR30622K
21.
21. A. Jha, D. Banerjee, and K. K. Chattopadhyay, Carbon. 49(4), 1272 (2011).
http://dx.doi.org/10.1016/j.carbon.2010.11.046
22.
22. N. De Jonge and J. M. Bonard, Philos. Trans. Roy. Soc. Lond. A. 362(1823), 2239 (2004).
http://dx.doi.org/10.1098/rsta.2004.1438
23.
23. W. A. De Heer, A. Chatelain, and D. Ugarte, Science. 270, 1179 (1995).
http://dx.doi.org/10.1126/science.270.5239.1179
24.
24. B. Gao, G. Z. Yue, Q. Qiu, Y. Cheng, H. Shimoda, L. Fleming, and O. Zhou, Adv. Mater. 13, 1770 (2001).
http://dx.doi.org/10.1002/1521-4095(200112)13:23<1770::AID-ADMA1770>3.0.CO;2-G
25.
25. P. H. Talemi and G. P. Simon, Carbon. 49, 2875 (2011).
http://dx.doi.org/10.1016/j.carbon.2011.03.004
26.
26. J. L. Qi, X. Wang, W. T. Zheng, H. W. Tian, C. Q. Hu, and Y. S. Peng, J. Phys. D: Appl. Phys. 43, 055302 (2010).
http://dx.doi.org/10.1088/0022-3727/43/5/055302
27.
27. U. N. Maiti, S. Maiti, N. S. Das, and K. K. Chattopadhyay, Nanoscale 3, 4135 (2011).
http://dx.doi.org/10.1039/c1nr10383k
28.
28. S. H. Jo, D. Z. Wang, J. Y. Huang, W. Z. Li, K. Kempa, and Z. F. Ren, Appl. Phys. Lett. 85(5), 810 (2004).
http://dx.doi.org/10.1063/1.1776330
29.
29. C. Du and N. Pan, Nanotechnology. 17, 5314 (2006).
http://dx.doi.org/10.1088/0957-4484/17/21/005
30.
30. T. Zhao, Y. Liu, and J. Zhu, Carbon 43, 2907 (2005).
http://dx.doi.org/10.1016/j.carbon.2005.06.005
31.
31. D. Banerjee, A. Jha, and K. K. Chattopadhyay, Physica E. 41(7), 1174 (2009).
http://dx.doi.org/10.1016/j.physe.2009.01.014
32.
32. M. Baskey and S. K. Saha, Adv. Mater. 24, 1589 (2012).
http://dx.doi.org/10.1002/adma.201104717
33.
33. X. Li, G. Zhang, X. Bai, X. Sun, X. Wang, E. Wang, and H. Dai, Nat. Nanotechnol. 3, 538 (2008).
http://dx.doi.org/10.1038/nnano.2008.210
34.
34. R. Sui, J. H. Lo, and P. A. Charpentier, J. Phys. Chem. C. 113, 21022 (2009).
http://dx.doi.org/10.1021/jp904599t
35.
35. X. An, T. Simmons, R. Shah, C. Wolfe, K. M. Lewis, M. Washington, S. K. Nayak, S. Talapatra, and S. Kar, NanoLett. 10, 4295 (2010).
http://dx.doi.org/10.1021/nl903557p
36.
36. K. P. Loh, Q. Bao, P. K. Ang, and J. Yang, J. Mater. Chem. 20, 2277 (2010).
http://dx.doi.org/10.1039/b920539j
37.
37. M. Lotya, Y. Hernandez, P. J. King, R. J. Smith, V. Nicolosi, L. S. Karlsson, F. M. Blighe, S. De, Z. Wang, I. T. McGovern, G. S. Duesberg, and J. N. Coleman, J. Am. Chem. Soc. 131, 3611 (2009).
http://dx.doi.org/10.1021/ja807449u
38.
38. R. H. Fowler and L. Nordheim, Proc. Roy. Soc. Lond A. 119, 173 (1928).
http://dx.doi.org/10.1098/rspa.1928.0091
39.
39. I. Jung, D. Dikin, S. Park, W. Cai, S. L. Mielke, and R. S. Ruoff, J. Phys. Chem. C. 112(51), 20264 (2008).
http://dx.doi.org/10.1021/jp807525d
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/1/10.1063/1.4789409
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

XRD patterns for a-CNTs and a-CNTs-RGO.

Image of FIG. 2.

Click to view

FIG. 2.

FTIR spectra for a-CNTs, a-CNTs-RGO, GO and RGO.

Image of FIG. 3.

Click to view

FIG. 3.

(a) Flexible hybrid film snap (b) Schematic representation of the flexible hybrid thin film assembly.

Image of FIG. 4.

Click to view

FIG. 4.

(a) High magnification image of RGO sheets deposited over carbon cloth fibers depicting the planar RGO morphology encapsulating the carbon cloth fiber. (b) FESEM image of asymmetrically laid dense bunch of a-CNTs on carbon cloth fiber (c) and (d) represent the top assembled RGO sheet morphology over carbon cloth fibers with protruding enhanced edge sites demarcated by the arrows in different magnifications. The circled regions demarcate the presence of bottom encapsulated a-CNTs.

Image of FIG. 5.

Click to view

FIG. 5.

Low magnification image of uniformly deposited hybrid film over a wide area.

Image of FIG. 6.

Click to view

FIG. 6.

(a, b, c). Schematic representation depicting the settlement morphology of a-CNTs, RGO and a-CNTs-RGO respectively over the top half semi -circle of the cylindrical vortex of the carbon cloth fiber (sectional view).

Image of FIG. 7.

Click to view

FIG. 7.

(a) HR-TEM image of hybrid a-CNTs-RGO network. The circled region shows the presence of bundled a-CNTs lying entangled with the RGO layers; (b) shows the HRTEM image of bunched a-CNTs having average diameter ∼80-100 nm; (c) Represents the low magnification image of RGO flakes; (d) shows the lattice image of RGO with in plane lattice constant ‘a’ value ∼2.4 Å.

Image of FIG. 8.

Click to view

FIG. 8.

a) Current density (J) Vs (E) electric field curves for pristine a-CNTs and a-CNTs-RGO hybrid thin films; (b) Corresponding F-N plots.

Image of FIG. 9.

Click to view

FIG. 9.

Comparison in between the Turn-on field and Current density (defined at Eth = 0.55 V/μm1) for pristine a-CNTs, RGO and a-CNTs-RGO hybrid thin films.

Tables

Generic image for table

Click to view

Table I.

Comparison of the reported field emission data.

Loading

Article metrics loading...

/content/aip/journal/adva/3/1/10.1063/1.4789409
2013-01-16
2014-04-23

Abstract

In this work a hybrid structure assembly of amorphous carbon nanotubes (a-CNTs) -reduced graphene oxide (RGO) has been fabricated on carbon cloth/PET substrates for enhanced edge effect assisted flexible field emission device application. The carbon nanostructures prepared by chemical processes were finally deposited one over the other by a simple electrophoretic deposition (EPD) method on carbon cloth (CC) fabric. The thin films were then characterized by X-ray diffraction (XRD), Fourier transformed infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM) and high resolution transmission electron microscope (HRTEM). Field assisted electron emission measurement was performed on this hybrid structure. It was observed that the hybrid carbon nanostructure showed exceptional field emission properties with outstanding low turn-on and threshold field (Eto∼ 0.26 Vμm−1, Eth ∼ 0.55 Vμm1). These observed results are far better compared to standalone and plasma etched edge enhanced RGO systems due to the bottom layer a-CNTs bed which assisted in significant enhancement of edge effect in RGO sheets.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/1/1.4789409.html;jsessionid=9io83cct0gkep.x-aip-live-03?itemId=/content/aip/journal/adva/3/1/10.1063/1.4789409&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Edge effect enhanced electron field emission in top assembled reduced graphene oxide assisted by amorphous CNT-coated carbon cloth substrate
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/1/10.1063/1.4789409
10.1063/1.4789409
SEARCH_EXPAND_ITEM