Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. A. K. Geim and K. S. Novoselov, Nat. Mater. 6, 183 (2007).
2. A. K. Geim, Science 19, 1530 (2009).
3. A. H. C. Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81(1), 109 (2009).
4. A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, Nat. Nanotechnol. 3, 210 (2008).
5. Z. S. Wu, S. Pei, W. Ren, D. Tang, L. Gao, B. Liu, F. Li, C. Liu, and H. M. Cheng, Adv. Mater. 21, 1756 (2009)
6. M. Qian, T. Feng, H. Ding, L. Lin, H. Li, Y. Chen, and Z. Sun, Nanotechnology 20, 425702 (2009).
7. G. Eda, H. E. Unalan, N. Rupesinghe, G. A. J Amaratunga, and M. Chhowalla, 2008 Appl. Phys. Lett. 93, 233502 (2008).
8. Jun Li, Jiangtao Chen, Baomin Luo, Xingbin Yan, and Qunji Xue, AIP Advances 2, 022101 (2012).
9. P. Blake, P. D. Brimicombe, R. Nair, T. J. Booth, D. Jiang, F. Schedin, L. A. Ponomarenko, S. V. Morozov, H. F. Gleeson, E. W. Hill, A. K. Geim, and K. S. Novoselov, Nano Lett. 8(6), 1704.
10. F. Schedin, A. K. Geim, S. V. Morozov, E. W Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, Nat. Mater. 6, 652 (2007).
11. K. Zhang, L. L. Zhang, X. S. Zhao, and J. Wu, Chem. Mater. 22, 1392 (2010).
12. Y. K. Kim and D. H. Min, Langmuir 25(19), 11302 (2009).
13. X. Li, H. Zhu, K. Wang, A. Cao, J. Wei, C. Li, Y. Jia, Z. Li, X. Li, and D. Wu, Adv. Mater. 22, 2743 (2010).
14. L. J. Cote, F. Kim, and J. Huang, J. Am. Chem. Soc. 131(3), 1043 (2009).
15. W. S. Hummers and R. E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958).
16. S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Rouff, Carbon. 45, 1558 (2007).
17. V. Lee, L. Whittaker, C. Jaye, K. M. Baroudi, D. A. Fischer, and S. Banerjee, Chem. Mater. 21, 3905 (2009).
18. D. Li, M. B. Muller, S. Gilje, R. B. Kaner, and G. G. Wallace, Nat. Nanotechnol. 3, 101 (2008).
19. H. Yamaguchi, K. Murakami, G. Eda, T. Fujita, P. Guan, W. Wang, C. Gong, J. Boisse, S. Miller, M. Acik, K. Cho, Y. J. Chabal, M. Chen, F. Wakaya, M. Takai, and M. Chhowalla, ACS Nano. 5(6), 4945 (2011).
20. E. Stratakis, G. Eda, H. Yamaguchi, E. Kymakis, C. Fotakis, and M. Chhowalla, Nanoscale. Advance Article DOI:10.1039/C2NR30622K (2012).
21. A. Jha, D. Banerjee, and K. K. Chattopadhyay, Carbon. 49(4), 1272 (2011).
22. N. De Jonge and J. M. Bonard, Philos. Trans. Roy. Soc. Lond. A. 362(1823), 2239 (2004).
23. W. A. De Heer, A. Chatelain, and D. Ugarte, Science. 270, 1179 (1995).
24. B. Gao, G. Z. Yue, Q. Qiu, Y. Cheng, H. Shimoda, L. Fleming, and O. Zhou, Adv. Mater. 13, 1770 (2001).<1770::AID-ADMA1770>3.0.CO;2-G
25. P. H. Talemi and G. P. Simon, Carbon. 49, 2875 (2011).
26. J. L. Qi, X. Wang, W. T. Zheng, H. W. Tian, C. Q. Hu, and Y. S. Peng, J. Phys. D: Appl. Phys. 43, 055302 (2010).
27. U. N. Maiti, S. Maiti, N. S. Das, and K. K. Chattopadhyay, Nanoscale 3, 4135 (2011).
28. S. H. Jo, D. Z. Wang, J. Y. Huang, W. Z. Li, K. Kempa, and Z. F. Ren, Appl. Phys. Lett. 85(5), 810 (2004).
29. C. Du and N. Pan, Nanotechnology. 17, 5314 (2006).
30. T. Zhao, Y. Liu, and J. Zhu, Carbon 43, 2907 (2005).
31. D. Banerjee, A. Jha, and K. K. Chattopadhyay, Physica E. 41(7), 1174 (2009).
32. M. Baskey and S. K. Saha, Adv. Mater. 24, 1589 (2012).
33. X. Li, G. Zhang, X. Bai, X. Sun, X. Wang, E. Wang, and H. Dai, Nat. Nanotechnol. 3, 538 (2008).
34. R. Sui, J. H. Lo, and P. A. Charpentier, J. Phys. Chem. C. 113, 21022 (2009).
35. X. An, T. Simmons, R. Shah, C. Wolfe, K. M. Lewis, M. Washington, S. K. Nayak, S. Talapatra, and S. Kar, NanoLett. 10, 4295 (2010).
36. K. P. Loh, Q. Bao, P. K. Ang, and J. Yang, J. Mater. Chem. 20, 2277 (2010).
37. M. Lotya, Y. Hernandez, P. J. King, R. J. Smith, V. Nicolosi, L. S. Karlsson, F. M. Blighe, S. De, Z. Wang, I. T. McGovern, G. S. Duesberg, and J. N. Coleman, J. Am. Chem. Soc. 131, 3611 (2009).
38. R. H. Fowler and L. Nordheim, Proc. Roy. Soc. Lond A. 119, 173 (1928).
39. I. Jung, D. Dikin, S. Park, W. Cai, S. L. Mielke, and R. S. Ruoff, J. Phys. Chem. C. 112(51), 20264 (2008).

Data & Media loading...


Article metrics loading...



In this work a hybrid structure assembly of amorphous carbon nanotubes (a-CNTs) -reduced graphene oxide (RGO) has been fabricated on carbon cloth/PET substrates for enhanced edge effect assisted flexible field emission device application. The carbon nanostructures prepared by chemical processes were finally deposited one over the other by a simple electrophoretic deposition (EPD) method on carbon cloth (CC) fabric. The thin films were then characterized by X-ray diffraction (XRD), Fourier transformed infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM) and high resolution transmission electron microscope (HRTEM). Field assisted electron emission measurement was performed on this hybrid structure. It was observed that the hybrid carbon nanostructure showed exceptional field emission properties with outstanding low turn-on and threshold field (Eto∼ 0.26 Vμm−1, Eth ∼ 0.55 Vμm1). These observed results are far better compared to standalone and plasma etched edge enhanced RGO systems due to the bottom layer a-CNTs bed which assisted in significant enhancement of edge effect in RGO sheets.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd