Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. A. K. Geim and K. S. Novoselov, Nat. Mater. 6, 183 (2007).
2. K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong, Nature 457, 706 (2009).
3. L. Gomez De Arco, Y. Zhang, A. Kumar, and C. Zhou, IEEE Trans. Nanotech. 8, 135 (2009).
4. A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, Nano Lett. 9, 30 (2009).
5. X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, Nano Lett. 9, 4359 (2009).
6. X. L. Li, X. R. Wang, L. Zhang, S. W. Lee, and H. J. Dai, Science 319, 1229 (2008).
7. X. R. Wang, Y. J. Ouyang, X. L. Li, H. L. Wang, J. Guo, and H. J. Dai, Phys. Rev. Lett. 100, 206803 (2008).
8. M. D. Stoller, S. J. Park, Y. W. Zhu, J. H. An, and R. S. Ruoff, Nano Lett. 8, 3498 (2008).
9. E. J. Yoo, J. Kim, E. Hosono, H. S. Zhou, T. Kudo, and I. Honma, Nano Lett. 8, 2277 (2008).
10. V. C. Tung, M. J. Allen, Y. Yang, and R. B. Kaner, Nat. Nanotech 4, 25 (2008).
11. X. Gao, J. Jang, and S. Nagase, J. Phys. Chem. C 114, 832 (2010).
12. D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L. B. Alemany, W. Lu, and J. M. Tour, ACS Nano 4, 4806 (2010).
13. V. C. Tung, J. Kim, L. J. Cote, and J. Huang, J. Am. Chem. Soc. 133, 9262 (2011).
14. S. Pei and H.-M. Cheng, Carbon 50, 3210 (2012).
15. T. Szabó, O. Berkesi, P. Forgo, K. Josepovits, Y. Sanakis, D. Petridis, and I. Dékány, Chem. Mater. 18, 2740 (2006).
16. W. Cai, R. D. Piner, F. J. Stadermann, S. Park, M. A. Shaibat, Y. Ishii, D. Yang, A. Velamakanni, S. J. An, M. Stoller, J. An, D. Chen, and R. S. Ruoff, Science 321, 1815 (2008).
17. D. W. Boukhvalov and, M. I. J. Katsnelson, J. Am. Chem. Soc. 130, 10697 (2008).
18. C. Gómez-Navarro, R. T Weitz, A. Bittner, A. Mews, M. Scolari, M. Burghard, and K. Kern, Nano Lett. 7, 3499 (2007).
19. X. Li, H. Wang, J. T. Robinson, H. Sanchez, G. Diankov, and H. Dai, J. Am. Chem. Soc. 131, 15939 (2009).
20. T. O. Wehling, K. S. Novoselov, S. V. Morozov, E. E. Vdovin, M. I. Katsnelson, A. K. Geim, and A. I. Lichtenstein, Nano Lett. 8, 173 (2008).
21. W. Chen, S. Chen, D. C. Qi, X. Y. Gao, and A. T. S. Wee, J. Am. Chem. Soc. 129, 10418 (2007).
22. D. Yang, A. Velamakanni, G. Bozoklu, S. Park, M. Stoller, R. D. Piner, S. Stankovich, I. Jung, D. A. Field, C. A. Ventrice Jr., and R. S. Ruoff, Carbon 47, 145 (2009).
23. T. T. Dang, V. H. Pham, S. H. Hur, E. J. Kim, B.-S. Kong, and J. S. Chung, J. Colloid Interface Sci. 376, 91 (2012).
24. S. Yumitori, J. Mater. Sci. 35, 139 (2000).
25. Y. Wang, Y. Shao, D. W. Matson, J. Li, and Y. Lin, ACS Nano 4, 1790 (2010).
26. A. C. Ferrari and J. Robertson, Phys. Rev. B 61, 14095 (2000).
27. D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold, and L. Wirtz, Nano Lett. 7, 238 (2007).
28. S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, Carbon 45(7), 1558 (2007).
29. K. A. Mkhoyan, A. W. Contryman, J. Silcox, D. A. Stewart, G. Eda, C. Mattevi, S. Miller, and M. Chhowalla, Nano Lett. 9(3), 1058 (2009).
30. M. Cheng, R. Yang, L. C. Zhang, Z. Shi, W. Yang, D. Wang, G. Xie, D. Shi, and G. Zhang, Carbon 50, 2581 (2012).
31. Y. Kusano, F. Leipold, A. Fateev, B. Stenum, and H. Bindslev, Surf. Coat. Tech. 200, 846 (2005).

Data & Media loading...


Article metrics loading...



Reduced graphene oxide (rGO) has been produced using an ammonia (NH3) plasma reduction method. Simultaneous nitrogen doping during the reduction process enabled a rapid and low-temperature restoration of the electrical properties of the rGO. The chemical, structural, and electrical properties of the rGO films were analyzed using x-ray photoelectron spectroscopy, Raman spectroscopy, atomic force microscopy, and conductivity measurements. The oxygen functional groups were efficiently removed, and simultaneous nitrogen doping (6%) was carried out. In addition, the surface of the rGO film was flattened. Consequently, the rGO films exhibited electrical properties comparable to those prepared via other reduction methods.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd