Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/3/1/10.1063/1.4789545
1.
1. A. K. Geim and K. S. Novoselov, Nat. Mater. 6, 183 (2007).
http://dx.doi.org/10.1038/nmat1849
2.
2. K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong, Nature 457, 706 (2009).
http://dx.doi.org/10.1038/nature07719
3.
3. L. Gomez De Arco, Y. Zhang, A. Kumar, and C. Zhou, IEEE Trans. Nanotech. 8, 135 (2009).
http://dx.doi.org/10.1109/TNANO.2009.2013620
4.
4. A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, Nano Lett. 9, 30 (2009).
http://dx.doi.org/10.1021/nl801827v
5.
5. X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, Nano Lett. 9, 4359 (2009).
http://dx.doi.org/10.1021/nl902623y
6.
6. X. L. Li, X. R. Wang, L. Zhang, S. W. Lee, and H. J. Dai, Science 319, 1229 (2008).
http://dx.doi.org/10.1126/science.1150878
7.
7. X. R. Wang, Y. J. Ouyang, X. L. Li, H. L. Wang, J. Guo, and H. J. Dai, Phys. Rev. Lett. 100, 206803 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.206803
8.
8. M. D. Stoller, S. J. Park, Y. W. Zhu, J. H. An, and R. S. Ruoff, Nano Lett. 8, 3498 (2008).
http://dx.doi.org/10.1021/nl802558y
9.
9. E. J. Yoo, J. Kim, E. Hosono, H. S. Zhou, T. Kudo, and I. Honma, Nano Lett. 8, 2277 (2008).
http://dx.doi.org/10.1021/nl800957b
10.
10. V. C. Tung, M. J. Allen, Y. Yang, and R. B. Kaner, Nat. Nanotech 4, 25 (2008).
http://dx.doi.org/10.1038/nnano.2008.329
11.
11. X. Gao, J. Jang, and S. Nagase, J. Phys. Chem. C 114, 832 (2010).
http://dx.doi.org/10.1021/jp909284g
12.
12. D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L. B. Alemany, W. Lu, and J. M. Tour, ACS Nano 4, 4806 (2010).
http://dx.doi.org/10.1021/nn1006368
13.
13. V. C. Tung, J. Kim, L. J. Cote, and J. Huang, J. Am. Chem. Soc. 133, 9262 (2011).
http://dx.doi.org/10.1021/ja203464n
14.
14. S. Pei and H.-M. Cheng, Carbon 50, 3210 (2012).
http://dx.doi.org/10.1016/j.carbon.2011.11.010
15.
15. T. Szabó, O. Berkesi, P. Forgo, K. Josepovits, Y. Sanakis, D. Petridis, and I. Dékány, Chem. Mater. 18, 2740 (2006).
http://dx.doi.org/10.1021/cm060258+
16.
16. W. Cai, R. D. Piner, F. J. Stadermann, S. Park, M. A. Shaibat, Y. Ishii, D. Yang, A. Velamakanni, S. J. An, M. Stoller, J. An, D. Chen, and R. S. Ruoff, Science 321, 1815 (2008).
http://dx.doi.org/10.1126/science.1162369
17.
17. D. W. Boukhvalov and, M. I. J. Katsnelson, J. Am. Chem. Soc. 130, 10697 (2008).
http://dx.doi.org/10.1021/ja8021686
18.
18. C. Gómez-Navarro, R. T Weitz, A. Bittner, A. Mews, M. Scolari, M. Burghard, and K. Kern, Nano Lett. 7, 3499 (2007).
http://dx.doi.org/10.1021/nl072090c
19.
19. X. Li, H. Wang, J. T. Robinson, H. Sanchez, G. Diankov, and H. Dai, J. Am. Chem. Soc. 131, 15939 (2009).
http://dx.doi.org/10.1021/ja907098f
20.
20. T. O. Wehling, K. S. Novoselov, S. V. Morozov, E. E. Vdovin, M. I. Katsnelson, A. K. Geim, and A. I. Lichtenstein, Nano Lett. 8, 173 (2008).
http://dx.doi.org/10.1021/nl072364w
21.
21. W. Chen, S. Chen, D. C. Qi, X. Y. Gao, and A. T. S. Wee, J. Am. Chem. Soc. 129, 10418 (2007).
http://dx.doi.org/10.1021/ja071658g
22.
22. D. Yang, A. Velamakanni, G. Bozoklu, S. Park, M. Stoller, R. D. Piner, S. Stankovich, I. Jung, D. A. Field, C. A. Ventrice Jr., and R. S. Ruoff, Carbon 47, 145 (2009).
http://dx.doi.org/10.1016/j.carbon.2008.09.045
23.
23. T. T. Dang, V. H. Pham, S. H. Hur, E. J. Kim, B.-S. Kong, and J. S. Chung, J. Colloid Interface Sci. 376, 91 (2012).
http://dx.doi.org/10.1016/j.jcis.2012.03.026
24.
24. S. Yumitori, J. Mater. Sci. 35, 139 (2000).
http://dx.doi.org/10.1023/A:1004761103919
25.
25. Y. Wang, Y. Shao, D. W. Matson, J. Li, and Y. Lin, ACS Nano 4, 1790 (2010).
http://dx.doi.org/10.1021/nn100315s
26.
26. A. C. Ferrari and J. Robertson, Phys. Rev. B 61, 14095 (2000).
http://dx.doi.org/10.1103/PhysRevB.61.14095
27.
27. D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold, and L. Wirtz, Nano Lett. 7, 238 (2007).
http://dx.doi.org/10.1021/nl061702a
28.
28. S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, Carbon 45(7), 1558 (2007).
http://dx.doi.org/10.1016/j.carbon.2007.02.034
29.
29. K. A. Mkhoyan, A. W. Contryman, J. Silcox, D. A. Stewart, G. Eda, C. Mattevi, S. Miller, and M. Chhowalla, Nano Lett. 9(3), 1058 (2009).
http://dx.doi.org/10.1021/nl8034256
30.
30. M. Cheng, R. Yang, L. C. Zhang, Z. Shi, W. Yang, D. Wang, G. Xie, D. Shi, and G. Zhang, Carbon 50, 2581 (2012).
http://dx.doi.org/10.1016/j.carbon.2012.02.016
31.
31. Y. Kusano, F. Leipold, A. Fateev, B. Stenum, and H. Bindslev, Surf. Coat. Tech. 200, 846 (2005).
http://dx.doi.org/10.1016/j.surfcoat.2005.01.022
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/1/10.1063/1.4789545
Loading
/content/aip/journal/adva/3/1/10.1063/1.4789545
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/3/1/10.1063/1.4789545
2013-01-18
2016-12-05

Abstract

Reduced graphene oxide (rGO) has been produced using an ammonia (NH3) plasma reduction method. Simultaneous nitrogen doping during the reduction process enabled a rapid and low-temperature restoration of the electrical properties of the rGO. The chemical, structural, and electrical properties of the rGO films were analyzed using x-ray photoelectron spectroscopy, Raman spectroscopy, atomic force microscopy, and conductivity measurements. The oxygen functional groups were efficiently removed, and simultaneous nitrogen doping (6%) was carried out. In addition, the surface of the rGO film was flattened. Consequently, the rGO films exhibited electrical properties comparable to those prepared via other reduction methods.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/1/1.4789545.html;jsessionid=bt8g_oVHTV-ofGlx_7GS9jeN.x-aip-live-02?itemId=/content/aip/journal/adva/3/1/10.1063/1.4789545&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/3/1/10.1063/1.4789545&pageURL=http://scitation.aip.org/content/aip/journal/adva/3/1/10.1063/1.4789545'
Right1,Right2,Right3,