Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/3/10/10.1063/1.4824435
1.
1. R. Pethig et al., Biomicrofluidics 4(2), 022811 (2010).
http://dx.doi.org/10.1063/1.3456626
2.
2. B. H. Lapizco-Encinas and M. Rito-Palomares, Electrophoresis 28(24), 4521 (2007).
http://dx.doi.org/10.1002/elps.200700303
3.
3. H. Morgan and N. G. Green, AC electrokinetics. (Research Studies Press, 2003).
4.
4. D. J. Bakewell and A. Chichenkov, J. Phys. D 45(36), 15 (2012).
5.
5. D. J. Bakewell and A. Chichenkov, J. Phys. D 45(49), 2 (2012).
6.
6. D. J. Bakewell and D. Holmes, Electrophoresis 34(7), 987 (2013).
http://dx.doi.org/10.1002/elps.201200422
7.
7. H. A. Pohl, DiElectrophoresis. (Cambridge University Press, 1978).
8.
8. P. R. C. Gascoyne et al., IEEE Trans. Indus. Appl. 30(4), 829 (1994).
http://dx.doi.org/10.1109/28.297896
9.
9. M. S. Talary and R. Pethig, IEE Proc. Sci. Meas. Tech 141(5), 395 (1994).
http://dx.doi.org/10.1049/ip-smt:19941073
10.
10. M. P. Hughes et al., Biochim Biophys Acta 1425(1), 119 (1998).
http://dx.doi.org/10.1016/S0304-4165(98)00058-0
11.
11. D. J. Bakewell and H. Morgan, IEEE Trans. Dielec. Elec. Ins. 8(3), 566 (2001).
http://dx.doi.org/10.1109/94.933385
12.
12. D. J. Bakewell and H. Morgan, Meas. Sci. Tech. 15(1), 254 (2004).
http://dx.doi.org/10.1088/0957-0233/15/1/037
13.
13. I. Ermolina, J. Milner, and H. Morgan, Electrophoresis 27(20), 3939 (2006).
http://dx.doi.org/10.1002/elps.200500928
14.
14. D. J. Bakewell and H. Morgan, IEEE Trans. Nanobiosci. 5(2), 139 (2006).
http://dx.doi.org/10.1109/TNB.2005.864012
15.
15. A. Henning, F. F. Bier, and R. Holzel, Biomicrofluidics 4(2), 9 (2010).
http://dx.doi.org/10.1063/1.3430550
16.
16. G. Giraud et al., Biomicrofluidics 5(024116), 1 (2011).
http://dx.doi.org/10.1063/1.3604395
17.
17. B. G. Hawkins et al., Anal. Chem. 83(9), 3507 (2011).
http://dx.doi.org/10.1021/ac2002017
18.
18. H. Morgan, M. P. Hughes, and N. G. Green, Biophys. J. 77(1), 516 (1999).
http://dx.doi.org/10.1016/S0006-3495(99)76908-0
19.
19. K. L. Chan et al., Biochim. Biophys. Acta 1500(3), 313 (2000).
http://dx.doi.org/10.1016/S0925-4439(99)00115-5
20.
20. M. P. Hughes, H. Morgan, and F. J. Rixon, Biochim. Biophys. Acta 1571(1), 1 (2002).
http://dx.doi.org/10.1016/S0304-4165(02)00161-7
21.
21. Z. Gagnon et al., Electrophoresis 29(24), 4808 (2008).
http://dx.doi.org/10.1002/elps.200800528
22.
22. Z. Gagnon, S. Senapati, and H. C. Chang, Electrophoresis 31(4), 666 (2010).
http://dx.doi.org/10.1002/elps.200900473
23.
23. S. H. Baek et al., Anal. Chem. 81(18), 7737 (2009).
http://dx.doi.org/10.1021/ac901211b
24.
24. D. J. Bakewell, Dielectrophoresis of Nucleic Acids, in Encyclopedia of Nanotechnology, B. Bhushan, Editor. (Springer, 2012)
25.
25. H. O. Fatoyinbo, K. F. Hoeftges, and M. P. Hughes, Electrophoresis 29(1), 3 (2008).
http://dx.doi.org/10.1002/elps.200700586
26.
26. W. Choi et al., App. Phys. Lett. 93(14), 3 (2008).
27.
27. F. Gielen et al., Anal. Chem. 82(17), 7509 (2010).
http://dx.doi.org/10.1021/ac101557g
28.
28. C. C. Chung et al., Microfluid. Nanofluid. 10(2), 311 (2011).
http://dx.doi.org/10.1007/s10404-010-0670-8
29.
29. D. J. Bakewell, J. Phys. D. 44(8), 085501 (2011).
http://dx.doi.org/10.1088/0022-3727/44/8/085501
30.
30. D. J. Bakewell and A. Chichenkov, IEEE Trans. Nanobiosci. 11(1), 79 (2012).
http://dx.doi.org/10.1109/TNB.2011.2178430
31.
31. C. W. Gardiner, Handbook of stochastic methods for physics, chemistry, and the natural sciences (Springer-Verlag, 1985).
32.
32. A. Papoulis, Probability, Random Variables, and Stochastic Processes (McGraw-Hill, 1984).
33.
33. R. E. Walpole and R. H. Myers, Probability and statistics for engineers and scientists, 2nd Ed. (Macmillan, 1978).
34.
34. E. R. Dougherty, Probability and Statistics for the Engineering, Computing, and Physical Sciences (Prentice-Hall Inc., 1990).
35.
35. R. Michel et al., Microscopy Research and Technique 70(9), 763 (2007).
http://dx.doi.org/10.1002/jemt.20485
36.
36.See supplementary material at http://dx.doi.org/10.1063/1.4824435 for further details. [Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/10/10.1063/1.4824435
Loading
/content/aip/journal/adva/3/10/10.1063/1.4824435
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/3/10/10.1063/1.4824435
2013-10-01
2016-09-25

Abstract

Image processing methods and techniques for high-throughput quantification of dielectrophoretic (DEP) collections onto planar castellated electrode arrays are developed and evaluated. Fluorescence-based dielectrophoretic spectroscopy is an important tool for laboratory investigations of AC electrokinetic properties of nanoparticles. This paper details new, first principle, theoretical and experimental developments of geometric feature recognition techniques that enable quantification of positive dielectrophoretic (pDEP) nanoparticle collections onto castellated arrays. As an alternative to the geometric-based method, novel statistical methods that do not require any information about array features, are also developed using the quantile and standard deviation functions. Data from pDEP collection and release experiments using 200 nm diameter latex nanospheres demonstrates that pDEP quantification using the statistic-based methods yields quantitatively similar results to the geometric-based method. The development of geometric- and statistic-based quantification methods enables high-throughput, supervisor-free image processing tools critical for dielectrophoretic spectroscopy and automated DEP technology development.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/10/1.4824435.html;jsessionid=kPtVXINZfrrHBFwt5-_unuLd.x-aip-live-06?itemId=/content/aip/journal/adva/3/10/10.1063/1.4824435&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/3/10/10.1063/1.4824435&pageURL=http://scitation.aip.org/content/aip/journal/adva/3/10/10.1063/1.4824435'
Right1,Right2,Right3,