Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/3/10/10.1063/1.4824620
1.
1. W. P. Krekelberg, J. Mittal, V. Ganesan, and T. M. Truskett, Phys. Rev. E, 77, 041201 (2008);
http://dx.doi.org/10.1103/PhysRevE.77.041201
1.Y. D. Fomin, E. N. Tsiok, V. N. Ryzhov, J. Chem. Phys. 134, 044523 (2011);
http://dx.doi.org/10.1063/1.3530790
1.Y. B. Chang, and L. A. Viehland, AIP Advances 1, 032128 (2011);
http://dx.doi.org/10.1063/1.3625406
1.S. Samin and Y. Tsori, J. Chem. Phys. 136, 154908 (2012);
http://dx.doi.org/10.1063/1.4704673
1.S. Zhou, AIP Advances 3, 032109 (2013).
http://dx.doi.org/10.1063/1.4794798
2.
2. J.-F. Wax, R. Albaki, and J.-L. Bretonnet, Phys. Rev. B 62, 14818 (2000);
http://dx.doi.org/10.1103/PhysRevB.62.14818
2.D. A. Eisa, AIP Advances 1, 012110 (2011).
http://dx.doi.org/10.1063/1.3562502
3.
3. J. A. Moriarty and M. Widom, Phys. Rev. B 56, 7905 (1997);
http://dx.doi.org/10.1103/PhysRevB.56.7905
3.T. Ikeshoji, M. Otani, I. Hamada, O. Sugino, Y. Morikawa, Y. Okamoto, Y. M. Qian, and I. Yagi, AIP Advances 2, 032182 (2012).
http://dx.doi.org/10.1063/1.4756035
4.
4. D. Pini, G. Jialin, A. Parola, and L. Reatto, Chem. Phys. Lett. 327, 209 (2000);
http://dx.doi.org/10.1016/S0009-2614(00)00763-6
4.J. M. Bomont, J. L. Bretonnet, D. Costa, and J. P. Hansen, J. Chem. Phys. 137, 011101 (2012);
http://dx.doi.org/10.1063/1.4733390
4.J. M. Bomont and D. Costa, J. Chem. Phys. 137, 164901 (2012).
http://dx.doi.org/10.1063/1.4759503
5.
5. D. Pini, A. Parola, and L. Reatto, J. Phys: Condens. Matter 48, S2305 (2006);
http://dx.doi.org/10.1088/0953-8984/18/36/S06
5.A. Imperio and L. Reatto, J. Chem. Phys. 124, 164712 (2006);
http://dx.doi.org/10.1063/1.2185618
5.T. Kolokolnikov, H. Sun, D. Uminsky, A. L. Bertozzi, Phys. Rev. E 84, 015203 (2011);
http://dx.doi.org/10.1103/PhysRevE.84.015203
5.A. Hess, M. Pretzl, L. Heymann, A. Fery, N. Aksel, Phys. Rev. E 84, 031407 (2011).
http://dx.doi.org/10.1103/PhysRevE.84.031407
6.
6. R. P. Sear, S.-W. Chung, G. Markovich, W. M. Gelbart, and J. R. Heath, Phys. Rev. E 59, R6255 (1999).
http://dx.doi.org/10.1103/PhysRevE.59.R6255
7.
7. S. J. Mejía-Rosales, A. Gil-Villegas, B. I. Ivlev, and J. Ruiz-García, J. Phys. Condens. Matter 14, 4795 (2002).
http://dx.doi.org/10.1088/0953-8984/14/19/306
8.
8. W. Rzysko, O. Pizio, A. Patrykiejew, and S. Sokolowski, J. Chem. Phys. 129, 124502 (2008).
http://dx.doi.org/10.1063/1.2970884
9.
9. O. Pizio, H. Dominguez, Y. Duda, and S. Sokolowski, J. Chem. Phys. 130, 174504 (2009).
http://dx.doi.org/10.1063/1.3125930
10.
10. A. L. Benavides and A. Gil-Villegas, Mol. Phys. 97, 1225 (1999).
http://dx.doi.org/10.1080/00268979909482924
11.
11. L. A. Cervantes, A. L. Benavides, and F. del Río, J. Chem. Phys. 126, 084507 (2007).
http://dx.doi.org/10.1063/1.2463591
12.
12. S. Zhou, Phys. Rev. E 74, 031119 (2006);
http://dx.doi.org/10.1103/PhysRevE.74.031119
12.S. Zhou, J. Chem. Phys. 125, 144518 (2006).
http://dx.doi.org/10.1063/1.2353834
13.
13. S. Zhou, Phys. Rev. E 77, 041110 (2008).
http://dx.doi.org/10.1103/PhysRevE.77.041110
14.
14. S. Zhou, J. Chem. Phys. 130, 014502 (2009).
http://dx.doi.org/10.1063/1.3049399
15.
15. S. Zhou, J. Phys. Chem. B 111, 10736 (2007).
http://dx.doi.org/10.1021/jp071044y
16.
16. S. Zhou, J. Chem. Phys. 128, 104511 (2008).
http://dx.doi.org/10.1063/1.2888977
17.
17. S. Zhou, J. Chem. Phys. 135, 074103 (2011).
http://dx.doi.org/10.1063/1.3625919
18.
18. S. Zhou, J. Stat. Mech.-Theory E Paper ID/P09001 (2011).
19.
19. S. Zhou, Phys. Rev. E 79, 011126 (2009).
http://dx.doi.org/10.1103/PhysRevE.79.011126
20.
20. S. Zhou, J. Chem. Phys. 130, 054103 (2009).
http://dx.doi.org/10.1063/1.3072795
21.
21. D. Frenkel and B. Smit, Understanding Molecular Simulation (Academic Press, Boston, MA, 1996).
22.
22. R. W. Zwanzig, J. Chem. Phys. 22, 1420 (1954).
http://dx.doi.org/10.1063/1.1740193
23.
23. J. A. Barker and D. Henderson, J. Chem. Phys. 47, 2856 (1967).
http://dx.doi.org/10.1063/1.1712308
24.
24. S. Zhou, AIP Advances 1, 040703 (2011).
http://dx.doi.org/10.1063/1.3674298
25.
25. A. Malijevsky and S. Labik, Mol. Phys. 60, 663 (1987).
http://dx.doi.org/10.1080/00268978700100441
26.
26. N. F. Carnhan and K. E. Starling, J. Chem. Phys. 51, 635 (1969).
http://dx.doi.org/10.1063/1.1672048
27.
27. L. Verlet and J.-J. Weis, Phys. Rev. A 5, 939 (1972).
http://dx.doi.org/10.1103/PhysRevA.5.939
28.
28.See supplementary material at http://dx.doi.org/10.1063/1.4824620 for the rdfs information simulated with success. [Supplementary Material]
29.
29. D. Henderson, Fundamentals of Inhomogeneous Fluids (Marcel Dekker: New York, 1992).
30.
30. S. Zhou, J. Chem. Phys. 115, 2212 (2001).
http://dx.doi.org/10.1063/1.1383988
31.
31. D. W. Marr and A. P. Gast, J. Chem. Phys. 99, 2024 (1993).
http://dx.doi.org/10.1063/1.465265
32.
32. S. Zhou, J. Chem. Phys. 113, 8717 (2000).
http://dx.doi.org/10.1063/1.1318775
33.
33. M. B. Sweatman, Phys. Rev. E 65, 011102 (2002).
http://dx.doi.org/10.1103/PhysRevE.65.011102
34.
34. C. Ebner, W. F. Saam, and D. Stroud, Phys. Rev. A 14, 2264 (1976).
http://dx.doi.org/10.1103/PhysRevA.14.2264
35.
35. S. Zhou and J. R. Solana, Phys. Chem. Chem. Phys. 11, 11528 (2009).
http://dx.doi.org/10.1039/b916373e
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/10/10.1063/1.4824620
Loading
/content/aip/journal/adva/3/10/10.1063/1.4824620
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/3/10/10.1063/1.4824620
2013-10-02
2016-12-03

Abstract

Monte Carlo simulations in the canonical ensemble are performed for fluid with potential consisting of a square-well plus a square-barrier to obtain thermodynamic properties such as pressure, excess energy, constant volume excess heat capacity, and excess chemical potential, and structural property such as radial distribution function. The simulations cover a wide density range for the fluid phase, several temperatures, and different combinations of the parameters defining the potential. These simulation data have been used to test performances of a coupling parameter series expansion (CPSE) recently proposed by one of the authors [S. Zhou, Phys. Rev. E74, 031119 (2006)], and a traditional 2nd-order high temperature series expansion (HTSE) based on a macroscopic compressibility approximation (MAC) used with confidence since its introduction in 1967. It is found that (i) the MCA-based 2nd-order HTSE unexpectedly and depressingly fails for most situations investigated, and the present simulation results can serve well as strict criteria for testing liquid state theories. (ii) The CPSE perturbation scheme is shown to be capable of predicting very accurately most of the thermodynamic properties simulated, but the most appropriate level of truncating the CPSE differs and depends on the range of the potential to be calculated; in particular, the shorter the potential range is, the higher the most appropriate truncating level can be, and along with rising of the potential range the performance of the CPSE perturbation scheme will decrease at higher truncating level. (iii) The CPSE perturbation scheme can calculate satisfactorily bulk fluid rdf, and such calculations can be done for all fluid states of the whole phase diagram. (iv) The CPSE is a convergent series at higher temperatures, but show attribute of asymptotic series at lower temperatures, and as a result, the surest asymptotic value occurs at lower-order truncation.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/10/1.4824620.html;jsessionid=UOLGuuOc2nHvHJUDaS5jSwWT.x-aip-live-03?itemId=/content/aip/journal/adva/3/10/10.1063/1.4824620&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/3/10/10.1063/1.4824620&pageURL=http://scitation.aip.org/content/aip/journal/adva/3/10/10.1063/1.4824620'
Right1,Right2,Right3,