Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/3/10/10.1063/1.4824622
1.
1. T. Li, W. Hu, and D. Zhu, Adv. Mater. 22, 286 (2010).
http://dx.doi.org/10.1002/adma.200900864
2.
2. Y. Imry and R. Landauer, Rev. Mod. Phys. 71, S306 (1999).
http://dx.doi.org/10.1103/RevModPhys.71.S306
3.
3. M. Zwolak and M. Di Ventra, Rev. Mod. Phys. 80, 141 (2008).
http://dx.doi.org/10.1103/RevModPhys.80.141
4.
4. R. Zikic, P. S. Krstic, X.-G. Zhang, M. Fuentes-Cabrera, J. Wells, and X. C. Zhao, Phys. Rev. E 74, 011919 (2006).
http://dx.doi.org/10.1103/PhysRevE.74.011919
5.
5. J. Lagerqvist, M. Zwolak, M. Di Ventra, Nano Lett. 6, 779 (2006).
http://dx.doi.org/10.1021/nl0601076
6.
6. J.-Q. Lu and X.-G. Zhang, Biophys. J. 95, L60 (2008).
http://dx.doi.org/10.1529/biophysj.108.140749
7.
7. C. Roland, M. B. Nardelli, J. Wang, and H. Guo, Phys. Rev. Lett. 84, 2921 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.2921
8.
8. M. Buttiker, H. Thomas, and A. Pretre, Phys. Lett. A 180, 364 (1993).
http://dx.doi.org/10.1016/0375-9601(93)91193-9
9.
9. A. Mayer, Phys. Rev. B 75, 045407 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.045407
10.
10. Z. Wang, Phys. Rev. B 79, 155407 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.155407
11.
11. M. Di Ventra and T. N. Todorov, J. Phys. Cond. Matt. 16, 8025 (2004).
http://dx.doi.org/10.1088/0953-8984/16/45/024
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/10/10.1063/1.4824622
Loading
/content/aip/journal/adva/3/10/10.1063/1.4824622
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/3/10/10.1063/1.4824622
2013-10-02
2016-09-25

Abstract

Modeling nanoscale capacitance presents particular challenge because of dynamic contribution from electrodes, which can usually be neglected in modeling macroscopic capacitance and nanoscale conductance. We present a model to calculate capacitances of nano-gap configurations and define effective capacitances of nanoscale structures. The model is implemented by using a classical atomic charge-dipole approximation and applied to calculate capacitance of a carbon nanotube nano-gap and effective capacitance of a buckyball inside the nano-gap. Our results show that capacitance of the carbon nanotube nano-gap increases with length of electrodes which demonstrates .

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/10/1.4824622.html;jsessionid=xOTqSYWHvJsVZLVBTDwZ4w5c.x-aip-live-03?itemId=/content/aip/journal/adva/3/10/10.1063/1.4824622&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/3/10/10.1063/1.4824622&pageURL=http://scitation.aip.org/content/aip/journal/adva/3/10/10.1063/1.4824622'
Right1,Right2,Right3,