Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/3/10/10.1063/1.4824623
1.
1. J.-W. Yeh, S.-K. Chen, S.-J. Lin, J.-Y. Gan, T.-S Chin, T.-T. Shun, C.-H. Tsau, and S.-Y. Chang, Adv. Eng. Mater. 6, 299 (2004).
http://dx.doi.org/10.1002/adem.200300567
2.
2. P.-K. Huang, J.-W. Yeh, T.-T Shun, and S.-K. Chen, Adv. Eng. Mater. 6, 74 (2004).
http://dx.doi.org/10.1002/adem.200300507
3.
3. M. C. Gao, JOM 64, 828 (2012).
http://dx.doi.org/10.1007/s11837-012-0363-8
4.
4. R. Raghavan, K. C. H. Kumar, and B. S. Murty, J. Alloys & Compd. 544, 152 (2012).
http://dx.doi.org/10.1016/j.jallcom.2012.07.105
5.
5. C. Zhang, F. Zhang, S. Chen, and W. Cao, JOM 64, 839 (2012).
http://dx.doi.org/10.1007/s11837-012-0365-6
6.
6. S. K. Chen and Y. F. Kao, AIP Adv. 2, 012111 (2012).
http://dx.doi.org/10.1063/1.3679072
7.
7. Y. F. Kao, S. K. Chen, J. H. Sheu, J. T. Lin, W. E. Lin, J. W. Yeh, S. J. Lin, T. H. Liou, and C. W. Wang, Int. J. Hydro. Energy 35, 9046 (2010).
http://dx.doi.org/10.1016/j.ijhydene.2010.06.012
8.
8. R. Hosemann, Z. Phys. 128, 465 (1950).
http://dx.doi.org/10.1007/BF01330029
9.
9. A. M. Hindeleh and R. Hosemann, J. Phys. C: Solid State Phys. 21, 4155 (1988).
http://dx.doi.org/10.1088/0022-3719/21/23/004
10.
10. R. Hosemann and A. M. Hindeleh, J. Macromol. Sci. Phys. B 34, 327 (1995).
http://dx.doi.org/10.1080/00222349508219497
11.
11. R. Hosemann, G. Willmann, and B. Boessler, Phys. Rev. A 6, 2243 (1972).
http://dx.doi.org/10.1103/PhysRevA.6.2243
12.
12. M. S. Zei and R. Hosemann, Phys. Rev. B 18, 6560 (1978).
http://dx.doi.org/10.1103/PhysRevB.18.6560
13.
13. A. Szczygielska, A. Burian, and J. C. Dore, J. Phys.: Condens. Matter. 13, 5545 (2001).
http://dx.doi.org/10.1088/0953-8984/13/24/301
14.
14. J. Fabian, J. L. Feldman, C. S. Hellberg, and S. M. Nakhmanson, Phys. Rev. B 67, 224302 (2003).
http://dx.doi.org/10.1103/PhysRevB.67.224302
15.
15. B. Cantor, I. T. H. Chang, P. Knight, and A. J. B. Vincent, Mater. Sci. Eng. A 375, 213 (2004).
16.
16. Y. P. Wang, B. S. Li, and H. Z. Fu, Adv. Eng. Mater. 11, 641 (2009).
http://dx.doi.org/10.1002/adem.200900057
17.
17. K. B. Zhang, Z. Y. Fu, J. Y. Zhang, J. Shi, W. M. Wang, H. Wang, Y. C. Wang, and Q. J. Zhang, J. Alloys Compd. 502, 295 (2010).
http://dx.doi.org/10.1016/j.jallcom.2009.11.104
18.
18. M. S. Lucas, G. B. Wiks, L. Mauger, J. A. Munoz, O. N. Senkov, E. Michel, J. Jorwath, S. L. Semiatin, M. B. Stone, D. L. Abernathy, and E. Karapetrova, Appl. Phys. Lett. 100, 251907 (2012).
http://dx.doi.org/10.1063/1.4730327
19.
19. S. Singh, N. Wanderka, B. S. Murty, U. Glatzel, and J. Banhart, Acta Mater. 59, 182 (2011).
http://dx.doi.org/10.1016/j.actamat.2010.09.023
20.
20. P. Duwez, R. H. Willens, and W. Klement, J. Appl. Phys. 31, 1136 (1960).
http://dx.doi.org/10.1063/1.1735777
21.
21. Y. X. Zhuang, W. J. Liu, Z. Y. Chen, H. D. Xue, and J. C. He, Mater. Sci. Eng. A 556, 399 (2012).
22.
22. Z. Hu, Y. Zhan, G. Zhang, J. She, and C. Li, Mater. Design 31, 1599 (2010).
http://dx.doi.org/10.1016/j.matdes.2009.09.016
23.
23. Y. J. Zhou, Y. Zhang, Y. L. Wang, and G. L. Chen, Appl. Phys. Lett. 90, 181904 (2007).
http://dx.doi.org/10.1063/1.2734517
24.
24. S. Varalakshmi, M. Kamaraj, and B. S. Murty, Mater. Sci. Eng. A 527, 1027 (2010).
http://dx.doi.org/10.1016/j.msea.2009.09.019
25.
25. J. H. Pi, Y. Pan, L. Zhang, and H. Zhang, J. Alloys Compd. 509, 5641 (2011).
http://dx.doi.org/10.1016/j.jallcom.2011.02.108
26.
26. S. Varalakshmi, M. Kamaraj, and B. S. Murty, J. Alloys Compd. 460, 253 (2008).
http://dx.doi.org/10.1016/j.jallcom.2007.05.104
27.
27. N. X. Chen, J. Shen, and X. P. Su, J. Phys.: Condens. Matter. 13, 2727 (2001).
http://dx.doi.org/10.1088/0953-8984/13/11/326
28.
28. N. X. Chen, Z. D. Chen, and Y. C. Wei, Phys. Rev. E 55, R5 (1997).
http://dx.doi.org/10.1103/PhysRevE.55.R5
29.
29. P. Qian, W. Su, J. Shen, and N. X. Chen, Comp. Mater. Sci. 43, 319 (2008).
http://dx.doi.org/10.1016/j.commatsci.2007.11.008
30.
30. Y. D. Wang and N. X. Chen, J. Phys.: Condens. Matter. 22, 135009 (2010).
http://dx.doi.org/10.1088/0953-8984/22/13/135009
31.
31. R. W. Cahn and P. Hassen, Physical Metallurgy (North Holland, Amsterdam, 1996).
32.
32. Y. Zhang, Y. J. Zhou, J. P. Lin, G. L. Chen, and P. K. Liaw, Adv. Eng. Mater. 10, 534 (2008).
http://dx.doi.org/10.1002/adem.200700240
33.
33. S. Guo, C. Ng, J. Lu, and C. T. Liu, J. Appl. Phys. 109, 103505 (2011).
http://dx.doi.org/10.1063/1.3587228
34.
34. J. W. Yeh, S. Y. Chang, Y. D. Hong, S. K. Chen, and S. J. Lin, Mater. Chem. & Phys. 103, 41 (2007).
http://dx.doi.org/10.1016/j.matchemphys.2007.01.003
35.
35. S. Y. Lin, S. Y. Chang, Y. C. Huang, F. S. Shieu, and J. W. Yeh, Surf. & Coatings Technol. 206, 5096 (2012).
http://dx.doi.org/10.1016/j.surfcoat.2012.06.035
36.
36. B. Welk, R. Williams, G. Viswanathan, M. Gibson, P. Liaw, and H. Fraser, Ultramicroscopy 134, 193199 (2013).
http://dx.doi.org/10.1016/j.ultramic.2013.06.006
37.
37. D. Shechtman, I. Blech, D. Gratias, and J. W. Cahn, Phys. Rev. Lett. 53, 1951 (1984).
http://dx.doi.org/10.1103/PhysRevLett.53.1951
38.
38. S. Q. Wang and H. Q. Ye, Philos. Mag. B 64, 551 (1991).
http://dx.doi.org/10.1080/13642819108217879
39.
39. Z. Zhang, H. Q. Ye, and K. H. Kuo, Philos. Mag. A 52, L49 (1991).
http://dx.doi.org/10.1080/01418618508242135
40.
40. J. Li Eads and R. P. Millane, Acta Crystallogr. 57, 507 (2011).
41.
41. F. R. N. Nabarro, Mater. Sci. Eng. A 234–236, 67 (1997).
42.
42. F. Otto, A. Dlouhy, Ch. Somsen, H. Bei, G. Eggeler, and E. P. George, Acta Mater. 61, 5743 (2013).
http://dx.doi.org/10.1016/j.actamat.2013.06.018
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/10/10.1063/1.4824623
Loading
/content/aip/journal/adva/3/10/10.1063/1.4824623
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/3/10/10.1063/1.4824623
2013-10-02
2016-09-30

Abstract

Atomic structure models of six-component high-entropy alloys with body-centered cubic structure are successfully built according to the principle of maximum entropy for the first time. The lattice distortion parameters of seven typical high-entropy alloys are calculated. From the optimized lattice configuration of high-entropy alloys, we show that these alloys are ideal three-dimensional paracrystals. The formation mechanism, structural feature, mechanical property, and application prospect of high-entropy alloys are discussed in comparison with the traditional alloys. The novel properties of body-centered cubic high-entropy alloys are attributed to the failure of dislocation deformation mechanism and the difficulty of directed particle diffusion.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/10/1.4824623.html;jsessionid=xtS21PKAgCpUwN09DFdVRhle.x-aip-live-03?itemId=/content/aip/journal/adva/3/10/10.1063/1.4824623&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/3/10/10.1063/1.4824623&pageURL=http://scitation.aip.org/content/aip/journal/adva/3/10/10.1063/1.4824623'
Right1,Right2,Right3,