Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/3/10/10.1063/1.4824741
1.
1. R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, and T. A. Witten, Nature 389, 827 (1997).
http://dx.doi.org/10.1038/39827
2.
2. R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, and T. A. Witten, Phys. Rev. E 62, 756 (2000).
http://dx.doi.org/10.1103/PhysRevE.62.756
3.
3. T. P. Bigioni, X. M. Lin, T. T. Nguyen, E. I. Corwin, T. A. Witten, and H. M. Jaeger, Nat. Mater. 5, 265 (2006).
http://dx.doi.org/10.1038/nmat1611
4.
4. S. Choi, S. Stassi, A. P. Pisano, and T. I. Zohdi, Langmuir 26, 11690 (2010).
http://dx.doi.org/10.1021/la101110t
5.
5. T. Kajiya, W. Kobayashi, T. Okuzono, and M. Doi, J. Phys. Chem. B 113, 15460 (2009).
http://dx.doi.org/10.1021/jp9077757
6.
6. D. Kaya, V. A. Belyi, and M. Muthukumar, J. Chem. Phys. 133, 114905 (2010).
http://dx.doi.org/10.1063/1.3493687
7.
7. Smalyukh II, O. V. Zribi, J. C. Butler, O. D. Lavrentovich, and G. C. L. Wong, Phys. Rev. Lett. 96, 177801 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.177801
8.
8. D. Soltman and V. Subramanian, Langmuir 24, 2224 (2008).
http://dx.doi.org/10.1021/la7026847
9.
9. L. Zhang, H. Liu, Y. Zhao, X. Sun, Y. Wen, Y. Guo, X. Gao, C.-a. Di, G. Yu, and Y. Liu, Adv. Mater. 24, 436 (2011).
http://dx.doi.org/10.1002/adma.201103620
10.
10. B. J. de Gans and U. S. Schubert, Langmuir 20, 7789 (2004).
http://dx.doi.org/10.1021/la049469o
11.
11. V. Dugas, J. Broutin, and E. Souteyrand, Langmuir 21, 9130 (2005).
http://dx.doi.org/10.1021/la050764y
12.
12. B. J. de Gans, P. C. Duineveld, and U. S. Schubert, Adv. Mater. 16, 203 (2004).
http://dx.doi.org/10.1002/adma.200300385
13.
13. M. Naqshbandi, J. Canning, B. C. Gibson, M. M. Nash, and M. J. Crossley, Nat. Commun. 3, 1188 (2012).
http://dx.doi.org/10.1038/ncomms2182
14.
14. K. Sefiane, J. Bionic Eng. 7, S82S93 (2010).
http://dx.doi.org/10.1016/S1672-6529(09)60221-3
15.
15. W. D. Ristenpart, P. G. Kim, C. Domingues, J. Wan, and H. A. Stone, Phys. Rev. Lett. 99, 234502 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.234502
16.
16. S. Andrew, J. Phys.: Condens. Matter 23, 083001 (2011).
http://dx.doi.org/10.1088/0953-8984/23/8/083001
17.
17. F. Fan and K. J. Stebe, Langmuir 20, 3062 (2004).
http://dx.doi.org/10.1021/la030380c
18.
18. R. Dou and B. Derby, Langmuir 28, 5331 (2012).
http://dx.doi.org/10.1021/la204440w
19.
19. H. Hu and R. G. Larson, J. Phys. Chem. B 110, 7090 (2006).
http://dx.doi.org/10.1021/jp0609232
20.
20. V. Truskett and K. J. Stebe, Langmuir 19, 8271 (2003).
http://dx.doi.org/10.1021/la030049t
21.
21. S. Maheshwari, L. Zhang, Y. Zhu, and H.-C. Chang, Phys. Rev. Lett. 100, 044503 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.044503
22.
22. T. Still, P. J. Yunker, and A. G. Yodh, Langmuir 28, 4984 (2012).
http://dx.doi.org/10.1021/la204928m
23.
23. C. S. Hodges, Y. Ding, and S. Biggs, J. Colloid Interface Sci. 352, 99 (2010).
http://dx.doi.org/10.1016/j.jcis.2010.08.044
24.
24. P. J. Yunker, T. Still, M. A. Lohr, and A. G. Yodh, Nature 476, 308 (2011).
http://dx.doi.org/10.1038/nature10344
25.
25. P. J. Yunker, M. A. Lohr, T. Still, A. Borodin, D. J. Durian, and A. G. Yodh, Phys. Rev. Lett. 110, 035501 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.035501
26.
26. A.-M. Cazabat and G. Guena, Soft Matter 6, 2591 (2010).
http://dx.doi.org/10.1039/b924477h
27.
27. Á. Marín, H. Gelderblom, D. Lohse, and J. Snoeijer, Phys. Rev. Lett. 107, 085502 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.085502
28.
28. H. Hu and R. G. Larson, Langmuir 21, 3963 (2005).
http://dx.doi.org/10.1021/la047528s
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/10/10.1063/1.4824741
Loading
/content/aip/journal/adva/3/10/10.1063/1.4824741
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/3/10/10.1063/1.4824741
2013-10-04
2016-09-25

Abstract

Ring formation from drying sessile colloidal droplets (∼1.0 mm in size) containing microparticles of silicon or polystyrene was investigated with video microscopy. Results show that ring formation begins at the pinned contact line with the growth of an annular nucleus in a line by line way, which recedes inward albeit only slightly, followed by stacking of particles when the flow velocity becomes sufficiently large. The central height of the droplet decreases linearly with evaporation time, which implies that in the early stage, the number of particles arriving at contact line increases with time in a power law N∝t3/(1 + λ), where the parameter λ, according to Deegan's evaporation model, is related to the contact angle via . Experimental values of λ agree well with model calculation for small contact angles, but are relatively smaller in the case of large contact angles. ‘Amorphization’ mechanism for the deposit at different stages of evaporation is discussed. Marangoni flow in a droplet on heated substrate introduces a desorption path for particles along the liquid surface, which can partially resolve the ring. Residual particles floating on the liquid surface may leave behind a homogeneous monolayer coating inside the dried spot. A “jump” in the droplet surface area at later stage of evaporation seems inevitably to cause a depletion zone of particles next to the ring. These results may be helpful for the development of strategies towards suppression of coffee ring effect and/or obtaining homogeneous coatings from drying colloidal suspension.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/10/1.4824741.html;jsessionid=I1XSqe_Ig_vSRibz29BODxma.x-aip-live-02?itemId=/content/aip/journal/adva/3/10/10.1063/1.4824741&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/3/10/10.1063/1.4824741&pageURL=http://scitation.aip.org/content/aip/journal/adva/3/10/10.1063/1.4824741'
Right1,Right2,Right3,