1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Tuning of undoped ZnO thin film via plasma enhanced atomic layer deposition and its application for an inverted polymer solar cell
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/3/10/10.1063/1.4825230
1.
1. S.-M. Lukas and L. M-.D. Judith, “ZnO – nanostructures, defects, and devices,” Materialstoday 5, 4048 (2007).
2.
2. A. B. Djurišić and Y. H. Leung, Small 2, 944961 (2006).
http://dx.doi.org/10.1002/smll.200600134
3.
3. Akhtar, M. R. Saeed, N. Saira, N. Rabia, and Shahzad, Adv. Sci. Lett. 19, 834838 (2013).
http://dx.doi.org/10.1166/asl.2013.4822
4.
4. A. K. K. Kyaw, X. W. Sun, C. Y. Jiang, G. Q. Lo, D. W. Zhao, and D. L. Kwong, Appl. Phys. Lett. 93, 221107 (2008).
http://dx.doi.org/10.1063/1.3039076
5.
5. Q. Zhang, C. S. Dandeneau, X. Zhou, and G. Cao, Adv. Mater. 21, 122 (2009).
6.
6. J.-T. Jang, H. Ryu, and W.-J. Lee, Appl. Surf. Sci. 276, 558562 (2013).
http://dx.doi.org/10.1016/j.apsusc.2013.03.133
7.
7. Z. L. Wang and J. Song, Science 312, 242246 (2006).
http://dx.doi.org/10.1126/science.1124005
8.
8. Y. M. Niquet, Nano Letters 7, 11051109 (2007).
http://dx.doi.org/10.1021/nl0629097
9.
9. Y. Qin, X. Wang, and Z. L. Wang, Nature 451, 809813 (2008).
http://dx.doi.org/10.1038/nature06601
10.
10. M. Alexe, S. Senz, M. A. Schubert, D. Hesse, and U. Gosele, Adv. Mater. 20, 40214026 (2008).
http://dx.doi.org/10.1002/adma.200800272
11.
11. M.-Y. Choi, D. Choi, M.-J. Jin, I. Kim, S.-H. Kim, J.-Y Choi, S. Y. Lee, J. M. Kim, and S.-W. Kim, Adv. Mater. 21, 21852189 (2009).
http://dx.doi.org/10.1002/adma.200803605
12.
12. H. Sun, H. Tian, Y. Yang, D. Xie, Y.-C. Zhang, X. Liu, S. Ma, H.-M. Zhao, and T.-L. Ren, Nanoscale 5, 6117 (2013).
http://dx.doi.org/10.1039/c3nr00866e
13.
13. N. R. Aghamalyan, T. A. Aslanyan, E. S. Vardanyan, E. A. Kafadaryan, R. K. Hovsepyan, S. I. Petrosyan, and A. R. Poghosyan, J. Contemp. Phys. (American Academy of Sciences) 48, 9397 (2013).
http://dx.doi.org/10.3103/S1068337213020072
14.
14. J. Erhart, Phys. Ics. Edu. 48, (2013).
15.
15. C. S. Wei, Y. Y. Lin, Y. C. Hu, C. W. Wu, C. K. Shih, C. T. Huang, and S. H. Chang, Sens. Actuators. A 128, 1824 (2006).
http://dx.doi.org/10.1016/j.sna.2005.12.044
16.
16. S. B. Lang, Phys. Today 58(8), 31 (2005).
http://dx.doi.org/10.1063/1.2062916
17.
17. C. Wang, X. Chu, and M. Wu, Sens. Actuators. B: Chem. 113, 320323 (2006).
http://dx.doi.org/10.1016/j.snb.2005.03.011
18.
18. X. Jiaqiang, C. Yuping, C. Daoyong, and S. Jianian, Sens. Actuators. B 113, 526531 (2006).
http://dx.doi.org/10.1016/j.snb.2005.03.097
19.
19. A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, and M. Kawasaki, Nat. Mater. 4, 4246 (2005).
http://dx.doi.org/10.1038/nmat1284
20.
20. L. Zhang, Y. Jiang, Y. Ding, M. Povey, and D. York, J. Nanopar. Res. 9, 479489 (2007).
http://dx.doi.org/10.1007/s11051-006-9150-1
21.
21. N. Padmavathy and R. Vijayaraghavan, Sci. Tech. Adv. Mater. 9, 035004 (2008).
http://dx.doi.org/10.1088/1468-6996/9/3/035004
22.
22. C.-C. Huang, R. S. Aronstam, D.-R. Chen, and Y.-W. Huang, Toxicol. in Vitro 24, 4555 (2010).
http://dx.doi.org/10.1016/j.tiv.2009.09.007
23.
23. W. Lin, Y. Xu, C-.C. Huang, Y. Ma, K. B. Shannon, D.-R. Chen, and Y.-W. Huang, J. Nanopart. Res. 11, 2539 (2009).
http://dx.doi.org/10.1007/s11051-008-9419-7
24.
24. V. Miikkulainen, M. Leskelä, M. Ritala, and R. L. Puurunen, J. Appl. Sci. 113, 021301 (2013).
25.
25. M. A. Thomas and J. B. Cui, ACS Appl. Mater. & Inter 4, 31223128 (2012).
http://dx.doi.org/10.1021/am300458q
26.
26. B. P. Zhanga, K. Wakatsukia, N. T. Binha, N. Usamic, and Y. Segawaa, Thin Solid Films 449, 1219 (2004).
http://dx.doi.org/10.1016/S0040-6090(03)01466-4
27.
27. H. Cheun, F.-H. Canek, Y. Zhou, W. J. Potscavage, S.-J. Kim, J. Shim, A. Dindar, and B. Kippelen, J. Phys. Chem. C 114, 2071320718 (2010).
http://dx.doi.org/10.1021/jp106641j
28.
28. J.-C. Wang, W.-T. Weng, M.-Y. Tsai, M.-K. Lee, S.-F. Horng, T.-P. Perng, C.-C. Kei, C.-C. Yu, and H.-F. Meng, J. Mater. Chem. 20, 862866 (2010).
http://dx.doi.org/10.1039/b921396a
29.
29. C. Zhu, D. J. Smith, and R. J. Nemanich, J. Vac. Sci. Tech. B 30, 051807 (2012).
http://dx.doi.org/10.1116/1.4752089
30.
30. C. Marichy, M. Bechelany, and N. Pinna, Adv. Mater. 24, 10171032 (2012).
http://dx.doi.org/10.1002/adma.201104129
31.
31. A. Savva and S. A. Choulis, Appl. Phys. Lett. 102, 233301 (2013).
http://dx.doi.org/10.1063/1.4811088
32.
32. A. Bikowski, T. Welzel, and K. Ellmer, Appl. Phys. Lett. 102, 242106 (2013).
http://dx.doi.org/10.1063/1.4811647
33.
33. T. Z. Oo, R. D. Chandra, N. Yantara, R. R. Prabhakar, L. H. Wong, N. Mathews, and S. G. Mhaisalkar, Org. Electron. 13, 870 (2012).
http://dx.doi.org/10.1016/j.orgel.2012.01.011
34.
34. S. Ray, R. Das, and A. K. Barua, Sol. Ene rgy. Mater. Sol. Cells 74, 387 (2002).
http://dx.doi.org/10.1016/S0927-0248(02)00128-9
35.
35. M. J. Alam and D. C. Cameron, J. Vac. Sci. Tech. A 19, 1642 (2001).
http://dx.doi.org/10.1116/1.1340659
36.
36. A. Aprilia, P. Wulandari, V. Suendo, Herman, R. Hidayat, A. Fujii, and M. Ozaki, Sol. Energy Mater. Sol. Cells 111, 181 (2013).
http://dx.doi.org/10.1016/j.solmat.2012.12.033
37.
37. Z. Zhou, K. Kato, T. Komaki, M. Yoshino, H. Yukawa, M. Morinaga, and K. Morita, J. Eur. Ceram. Soc. 24, 139 (2004).
http://dx.doi.org/10.1016/S0955-2219(03)00336-4
38.
38. L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Johnson, Y. Zhang, R. J. Saykally, and P. Yang, Angew. Chem. Int. Edi. 42, 3031 (2003).
http://dx.doi.org/10.1002/anie.200351461
39.
39. Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, J. Appl. Phys. 98, 041301 (2005).
http://dx.doi.org/10.1063/1.1992666
40.
40. T. Krajewski, E. Guziewicz, M. Godlewski, L. Wachnicki, I. A. Kowalik, A. Wojcik-Glodowska, M. Lukasiewicz, K. Kopalko, V. Osinniy, and M. Guziewicz, Microelectron. J. 40, 293 (2009).
http://dx.doi.org/10.1016/j.mejo.2008.07.053
41.
41. M. Godlewski, Microelectron. Eng. 85, 2434 (2008).
http://dx.doi.org/10.1016/j.mee.2008.09.012
42.
42. M. Godlewski, E. Guziewicz, G. Luka, T. Krajewski, M. Lukasiewicz, L. Wachnicki, A. Wachnicka, K. Kopalko, A. Sarem, and B. Dalati, Thin Solid Films 518, 1145 (2009).
http://dx.doi.org/10.1016/j.tsf.2009.04.066
43.
43. M. S. White, D. C. Olson, S. E. Shaheen, N. Kopidakis, and D. S. Ginley, Appl. Phys. Lett. 89, 143517 (2006).
http://dx.doi.org/10.1063/1.2359579
44.
44. Y. Sahin, S. Alem, R. de Bettignies, and J. M. Nunzi, Thin Solid Films 476, 340 (2005).
http://dx.doi.org/10.1016/j.tsf.2004.10.018
45.
45. M. Y. Song, K. J. Kim, and D. Y. Kim, Sol. Energy Mater. Sol. Cells 85, 31 (2005).
46.
46. A. Watanabe and A. Kasuya, Thin Solid Films 483, 358 (2005).
http://dx.doi.org/10.1016/j.tsf.2004.12.056
47.
47. C.-Y. Chang and F.-Y. Tsai, J. Mater. Chem. 21, 57105715 (2011).
http://dx.doi.org/10.1039/c0jm04066e
48.
48. C. Magne, T. Moehl, M. Urien, M. Gratzel, and T. Pauporté, J. Mater. Chem. A 1, 20792088 (2013).
http://dx.doi.org/10.1039/c2ta00674j
49.
49. A. K. K. Kyaw, D. H. Wang, D. Wynands, J. Zhang, T.-Q. Nguyen, G. C. Bazan, and A. J. Heeger, Nano Letters 13, 37963801 (2013).
http://dx.doi.org/10.1021/nl401758g
50.
50. O. Nilsen, O. B. Karlsen, A. Kjekshus, and H. Fjellvåg, Thin Solid Films 515, 45504558 (2007).
http://dx.doi.org/10.1016/j.tsf.2006.11.025
51.
51. F. Tuomisto and K. Saarinen, Phys. Rev. B 72, 085206 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.085206
52.
52. A. Janotti and C. G. Van de Walle, Phys. Rev. B 76, 165202 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.165202
53.
53. S. W. Kim, Sz. Fujita, M. S. Yi, and D. H. Yoon, Appl. Phys. Lett. 88, 253114 (2006).
http://dx.doi.org/10.1063/1.2216107
54.
54. A. B. Djurisic and Y. H. Leung, Small 2, 944 (2006).
http://dx.doi.org/10.1002/smll.200600134
55.
55. M.-J. Jin, S.-D. Lee, K.-S Shin, S.-W. Jeong, D. H. Yoon, D. Jeon, I.-H. Lee, D. K. Lee, and S.-W Kim, J. Nanosci. and Nanotech. 9, 14 (2009).
http://dx.doi.org/10.1166/jnn.2009.J01a
56.
56. S. C. Lyu, Y. Zhang, H. Ruh, H.-J. Lee, H.-W. Shim, E.-K. Suh, and C. J. Lee, Chem. Phys. Lett. 363, 134138 (2002).
http://dx.doi.org/10.1016/S0009-2614(02)01145-4
57.
57. S. W. Kim, M. Ueda, M. Funato, Sg. Fujita, and Sz. Fujita, J. Appl. Phys. 97, 104316 (2005).
http://dx.doi.org/10.1063/1.1898446
58.
58. M. P. Seah and W. A. Dench, Surf. Interface Anal. 1, 110 (1979).
http://dx.doi.org/10.1002/sia.740010102
59.
59. W. Zhang, S. H. Brongersma, O. Richard, B. Brijs, R. Palmans, L. Froyen, and K. Maex, Microelectron. Eng. 76, 146152 (2004).
http://dx.doi.org/10.1016/j.mee.2004.07.041
60.
60. C. G. Van de Walle, Phys. Rev. Lett. 85, 10121015 (2000).
http://dx.doi.org/10.1103/PhysRevLett.85.1012
61.
61. Z. Zhou, K. Kato, T. Komaki, M. Yoshino, H. Yukawa, M. Morinaga, and K. Morita, J. Eur. Ceram. Soc. 24, 139146 (2004).
http://dx.doi.org/10.1016/S0955-2219(03)00336-4
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/10/10.1063/1.4825230
Loading
/content/aip/journal/adva/3/10/10.1063/1.4825230
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/3/10/10.1063/1.4825230
2013-10-10
2014-10-25

Abstract

We studied the tuning of structural and optical properties of ZnO thin film and its correlation to the efficiency of inverted solar cell using plasma-enhanced atomic layer deposition (PEALD). The sequential injection of DEZn and O plasma was employed for the plasma-enhanced atomic layer deposition of ZnO thin film. As the growth temperature of ZnO film was increased from 100 °C to 300 °C, the crystallinity of ZnO film was improved from amorphous to highly ordered (002) direction ploy-crystal due to self crystallization. Increasing oxygen plasma time in PEALD process also introduces growing of hexagonal wurtzite phase of ZnO nanocrystal. Excess of oxygen plasma time induces enhanced deep level emission band (500 ∼ 700 nm) in photoluminescence due to Zn vacancies and other defects. The evolution of structural and optical properties of PEALD ZnO films also involves in change of electrical conductivity by 3 orders of magnitude. The highly tunable PEALD ZnO thin films were employed as the electron conductive layers in inverted polymer solar cells. Our study indicates that both structural and optical properties rather than electrical conductivities of ZnO films play more important role for the effective charge collection in photovoltaic device operation. The ability to tune the materials properties of ZnO films via PEALD should extend their functionality over the wide range of advanced electronic applications.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/10/1.4825230.html;jsessionid=q3d92nk9gqik.x-aip-live-02?itemId=/content/aip/journal/adva/3/10/10.1063/1.4825230&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Tuning of undoped ZnO thin film via plasma enhanced atomic layer deposition and its application for an inverted polymer solar cell
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/10/10.1063/1.4825230
10.1063/1.4825230
SEARCH_EXPAND_ITEM