Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. Y. Chiba, A. Islam, Y. Watanabe, R. Koyama, N. Koide, and L. Han, Jpn. J. Appl. Phys. 45, L638 (2006).
2. M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, Prog. Photovolt: Res. Appl. 20, 12 (2012).
3. C. H. Chang and Y. L. Lee, Appl. Phys. Lett. 91, 053503 (2007).
4. L. J. Diguna, Q. Shen, J. Kobayashi, and T. Toyoda, Appl. Phys. Lett. 91, 023116 (2007).
5. H. Lee, H. C. Leventis, S. Moon, P. Chen, S. Ito, S. A. Haque, T. Torres, F. Nuesch, T. Geiger, S. M. Zakeeruddin, M. Grätzel, and M. K. Nazeeruddin, Adv. Funct. Mater. 19, 2735 (2009).
6. T. Toyoda and Q. Shen, J. Phys. Chem. Lett. 3, 1885 (2012).
7. N. Guijarro, Q. Shen, S. Giménez, I. Mora-Seró, J. Bisquert, T. Lana-Villarreal, T. Toyoda, and R. Gómez, J. Phys. Chem. C 114, 22352 (2010).
8. D. F. Underwood, T. Kippenny, and S. J. Rosenthal, Eur. Phys. J. D 16, 241 (2001).
9. A. J. Nozik, Physica E 14, 115 (2002).
10. V. I. Klimov, J. Phys. Chem. B 110, 16827 (2006).
11. R. D. Schaller, M. Sykora, J. M. Pietryga, and V. I. Klimov, Nano Lett. 6, 424 (2006).
12. A. J. Nozik, Chem. Phys. Lett. 3, 457 (2008).
13. W. Shockley and H. J. Queisser, J. Appl. Phys. 32, 510 (1961).
14. M. C. Beard, K. P. Knutsen, P. Yu, J. M. Luther, Q. Song, W. Metzger, R. J. Ellingson, and A. J. Nozik, Nano Lett. 7, 2506 (2007).
15. Q. Niitsoo, S. K. Sarkar, P. Pejoux, S. Rühle, D. Cahen, and G. Hodes, J. Photochem. Photobiol. A 181, 306 (2006).
16. A. Kongkanand, K. Tvrdy, K. Takechi, M. Kuno, and P. V. Kamat, J. Am. Chem. Soc. 130, 4007 (2008).
17. Q. Shen, A. Yamada, S. Tamura, and T. Toyoda, Appl. Phys. Lett. 97, 123107 (2010).
18. V. González-Pedro, X. Xu, I. Mora-Seró, and J. Bisquert, ACS Nano 4, 5788 (2010).
19. T. Toyoda, K. Oshikane, D. Li, Y. Luo, Q. Meng, and Q. Shen, J. Appl. Phys. 108, 114340 (2010).
20. H. Lee, M. Wang, P. Chen, D. R. Gamelin, S. M. Zakeeruddin, M. Grätzel, and M. K. Nazeeruddin, Nano Lett. 9, 4221 (2009).
21. J. J. Li, Y. A. Wang, W. Guo, J. C. Keay, T. D. Mishima, M. B. Johnson, and X. Peng, J. Am. Chem. Soc. 125, 12567 (2003).
22. L. Yin and C. Ye, Sci. Adv. Mater. 3, 41 (2011).
23. T. Toyoda, T. Uehata, R. Suganuma, S. Tamura, A. Sato, K. Yamamoto, Q. Shen, and N. Kobayashi, Jpn. J. Appl. Phys. 46, 4616 (2007).
24. M. Grätzel, J. Photochem. Photobiol. C 4, 145 (2003).
25. P. R. Somani, C. Dionigi, M. Murgia, D. Palles, P. Nozar, and G. Ruani, Sol. Energy Mater. Sol. Cells 87, 513 (2005).
26. A. Rosencwaig and A. Gersho, J. Appl. Phys. 47, 64 (1976).
27. L. J. Diguna, M. Murakami, A. Sato, Y. Kumagai, T. Ishihara, N. Kobayashi, Q. Shen, and T. Toyoda, Jpn. J. Appl. Phys. 45, 5563 (2006).
28. Q. Shen and T. Toyoda, Thin Solid Films 167, 438 (2003).
29. Q. Shen, J. Kobayashi, L. J. Diguna, and T. Toyoda, J. Appl. Phys. 103, 084304 (2008)
30. S. M. Yang, C. H. Huang, J. Zhai, Z. S. Wang, and L. Liang, J. Mater. Chem. 12, 1459 (2002).
31. A. Rosencwaig, Phys. Today 28, 23 (1975).
32. J. J. Prías-Barragán, L. Tirado-Mejía, H. Ariza-Calderón, L. Baños, J. J. Perez-Bueno, and M. E. Rodríguez, J. Cryst. Growth 286, 279 (2006).
33. A. I. Ekimov, A. L. Efros, and A. A. Onushchenko, Solid State Commun. 56, 921 (1985).
34. C. B. Murray, D. J. Norris, and M. G. Bawendi, J. Am. Chem. Soc. 115, 8706 (1993);
34.V. N. Soloviev, A. Eichhofer, D. Fenske, and U. Banin, J. Am. Chem. Soc. 122, 2673 (2000).
35. H. M. Pathan and C. D. Lokhande, Bull. Mater. Sci. 27, 85 (2004).
36. R. Solanki, J. Huo, and J. L. Freeouf, Appl. Phys. Lett. 81, 3864 (2002).
37. G. Martra, Appiled Catalysis A: General 200, 275 (2000).
38. T. H. Keil, Phys. Rev. 144, 582 (1966).
39. S. Knief and W. Niessen, Phys. Rev. B 59, 12940 (1999).

Data & Media loading...


Article metrics loading...



We have studied the optical absorption of CdSe quantum dots (QDs) adsorbed on inverse opal TiO (IO-TiO) and nanoparticulate TiO (NP-TiO) electrodes using photoacoustic (PA) measurements. The CdSe QDs were grown directly on IO-TiO and NP-TiO electrodes by a successive ionic layer adsorption and reaction (SILAR) method with different numbers of cycles. The average diameter of the QDs was estimated by applying an effective mass approximation to the PA spectra. The increasing size of the QDs with increasing number of cycles was confirmed by a redshift in the optical absorption spectrum. The average diameter of the CdSe QDs on the IO-TiO electrodes was similar to that on the NP-TiO ones, indicating that growth is independent of morphology. However, there were more CdSe QDs on the NP-TiO electrodes than on the IO-TiO ones, indicating that there were different amounts of active sites on each type of electrode. In addition, the Urbach parameter of the exponential optical absorption tail was also estimated from the PA spectrum. The Urbach parameter of CdSe QDs on IO-TiO electrodes was higher than that on NP-TiO ones, indicating that CdSe QDs on IO-TiO electrodes are more disordered states than those on NP-TiO electrodes. The Urbach parameter decreases in both cases with the increase of SILAR cycles, and it tended to move toward a constant value.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd