1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Optical absorption of CdSe quantum dots on electrodes with different morphology
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/3/10/10.1063/1.4825231
1.
1. Y. Chiba, A. Islam, Y. Watanabe, R. Koyama, N. Koide, and L. Han, Jpn. J. Appl. Phys. 45, L638 (2006).
http://dx.doi.org/10.1143/JJAP.45.L638
2.
2. M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, Prog. Photovolt: Res. Appl. 20, 12 (2012).
http://dx.doi.org/10.1002/pip.2163
3.
3. C. H. Chang and Y. L. Lee, Appl. Phys. Lett. 91, 053503 (2007).
http://dx.doi.org/10.1063/1.2768311
4.
4. L. J. Diguna, Q. Shen, J. Kobayashi, and T. Toyoda, Appl. Phys. Lett. 91, 023116 (2007).
http://dx.doi.org/10.1063/1.2757130
5.
5. H. Lee, H. C. Leventis, S. Moon, P. Chen, S. Ito, S. A. Haque, T. Torres, F. Nuesch, T. Geiger, S. M. Zakeeruddin, M. Grätzel, and M. K. Nazeeruddin, Adv. Funct. Mater. 19, 2735 (2009).
http://dx.doi.org/10.1002/adfm.200900081
6.
6. T. Toyoda and Q. Shen, J. Phys. Chem. Lett. 3, 1885 (2012).
http://dx.doi.org/10.1021/jz3004602
7.
7. N. Guijarro, Q. Shen, S. Giménez, I. Mora-Seró, J. Bisquert, T. Lana-Villarreal, T. Toyoda, and R. Gómez, J. Phys. Chem. C 114, 22352 (2010).
http://dx.doi.org/10.1021/jp108499h
8.
8. D. F. Underwood, T. Kippenny, and S. J. Rosenthal, Eur. Phys. J. D 16, 241 (2001).
http://dx.doi.org/10.1007/s100530170101
9.
9. A. J. Nozik, Physica E 14, 115 (2002).
http://dx.doi.org/10.1016/S1386-9477(02)00374-0
10.
10. V. I. Klimov, J. Phys. Chem. B 110, 16827 (2006).
http://dx.doi.org/10.1021/jp0615959
11.
11. R. D. Schaller, M. Sykora, J. M. Pietryga, and V. I. Klimov, Nano Lett. 6, 424 (2006).
http://dx.doi.org/10.1021/nl052276g
12.
12. A. J. Nozik, Chem. Phys. Lett. 3, 457 (2008).
13.
13. W. Shockley and H. J. Queisser, J. Appl. Phys. 32, 510 (1961).
http://dx.doi.org/10.1063/1.1736034
14.
14. M. C. Beard, K. P. Knutsen, P. Yu, J. M. Luther, Q. Song, W. Metzger, R. J. Ellingson, and A. J. Nozik, Nano Lett. 7, 2506 (2007).
http://dx.doi.org/10.1021/nl071486l
15.
15. Q. Niitsoo, S. K. Sarkar, P. Pejoux, S. Rühle, D. Cahen, and G. Hodes, J. Photochem. Photobiol. A 181, 306 (2006).
http://dx.doi.org/10.1016/j.jphotochem.2005.12.012
16.
16. A. Kongkanand, K. Tvrdy, K. Takechi, M. Kuno, and P. V. Kamat, J. Am. Chem. Soc. 130, 4007 (2008).
http://dx.doi.org/10.1021/ja0782706
17.
17. Q. Shen, A. Yamada, S. Tamura, and T. Toyoda, Appl. Phys. Lett. 97, 123107 (2010).
http://dx.doi.org/10.1063/1.3491245
18.
18. V. González-Pedro, X. Xu, I. Mora-Seró, and J. Bisquert, ACS Nano 4, 5788 (2010).
19.
19. T. Toyoda, K. Oshikane, D. Li, Y. Luo, Q. Meng, and Q. Shen, J. Appl. Phys. 108, 114340 (2010).
http://dx.doi.org/10.1063/1.3517066
20.
20. H. Lee, M. Wang, P. Chen, D. R. Gamelin, S. M. Zakeeruddin, M. Grätzel, and M. K. Nazeeruddin, Nano Lett. 9, 4221 (2009).
http://dx.doi.org/10.1021/nl902438d
21.
21. J. J. Li, Y. A. Wang, W. Guo, J. C. Keay, T. D. Mishima, M. B. Johnson, and X. Peng, J. Am. Chem. Soc. 125, 12567 (2003).
http://dx.doi.org/10.1021/ja0363563
22.
22. L. Yin and C. Ye, Sci. Adv. Mater. 3, 41 (2011).
http://dx.doi.org/10.1166/sam.2011.1139
23.
23. T. Toyoda, T. Uehata, R. Suganuma, S. Tamura, A. Sato, K. Yamamoto, Q. Shen, and N. Kobayashi, Jpn. J. Appl. Phys. 46, 4616 (2007).
http://dx.doi.org/10.1143/JJAP.46.4616
24.
24. M. Grätzel, J. Photochem. Photobiol. C 4, 145 (2003).
http://dx.doi.org/10.1016/S1389-5567(03)00026-1
25.
25. P. R. Somani, C. Dionigi, M. Murgia, D. Palles, P. Nozar, and G. Ruani, Sol. Energy Mater. Sol. Cells 87, 513 (2005).
http://dx.doi.org/10.1016/j.solmat.2004.07.037
26.
26. A. Rosencwaig and A. Gersho, J. Appl. Phys. 47, 64 (1976).
http://dx.doi.org/10.1063/1.322296
27.
27. L. J. Diguna, M. Murakami, A. Sato, Y. Kumagai, T. Ishihara, N. Kobayashi, Q. Shen, and T. Toyoda, Jpn. J. Appl. Phys. 45, 5563 (2006).
http://dx.doi.org/10.1143/JJAP.45.5563
28.
28. Q. Shen and T. Toyoda, Thin Solid Films 167, 438 (2003).
29.
29. Q. Shen, J. Kobayashi, L. J. Diguna, and T. Toyoda, J. Appl. Phys. 103, 084304 (2008)
http://dx.doi.org/10.1063/1.2903059
30.
30. S. M. Yang, C. H. Huang, J. Zhai, Z. S. Wang, and L. Liang, J. Mater. Chem. 12, 1459 (2002).
http://dx.doi.org/10.1039/b105796k
31.
31. A. Rosencwaig, Phys. Today 28, 23 (1975).
http://dx.doi.org/10.1063/1.3069155
32.
32. J. J. Prías-Barragán, L. Tirado-Mejía, H. Ariza-Calderón, L. Baños, J. J. Perez-Bueno, and M. E. Rodríguez, J. Cryst. Growth 286, 279 (2006).
http://dx.doi.org/10.1016/j.jcrysgro.2005.09.022
33.
33. A. I. Ekimov, A. L. Efros, and A. A. Onushchenko, Solid State Commun. 56, 921 (1985).
http://dx.doi.org/10.1016/S0038-1098(85)80025-9
34.
34. C. B. Murray, D. J. Norris, and M. G. Bawendi, J. Am. Chem. Soc. 115, 8706 (1993);
http://dx.doi.org/10.1021/ja00072a025
34.V. N. Soloviev, A. Eichhofer, D. Fenske, and U. Banin, J. Am. Chem. Soc. 122, 2673 (2000).
http://dx.doi.org/10.1021/ja9940367
35.
35. H. M. Pathan and C. D. Lokhande, Bull. Mater. Sci. 27, 85 (2004).
http://dx.doi.org/10.1007/BF02708491
36.
36. R. Solanki, J. Huo, and J. L. Freeouf, Appl. Phys. Lett. 81, 3864 (2002).
http://dx.doi.org/10.1063/1.1521570
37.
37. G. Martra, Appiled Catalysis A: General 200, 275 (2000).
http://dx.doi.org/10.1016/S0926-860X(00)00641-4
38.
38. T. H. Keil, Phys. Rev. 144, 582 (1966).
http://dx.doi.org/10.1103/PhysRev.144.582
39.
39. S. Knief and W. Niessen, Phys. Rev. B 59, 12940 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.12940
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/10/10.1063/1.4825231
Loading
/content/aip/journal/adva/3/10/10.1063/1.4825231
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/3/10/10.1063/1.4825231
2013-10-10
2014-12-28

Abstract

We have studied the optical absorption of CdSe quantum dots (QDs) adsorbed on inverse opal TiO (IO-TiO) and nanoparticulate TiO (NP-TiO) electrodes using photoacoustic (PA) measurements. The CdSe QDs were grown directly on IO-TiO and NP-TiO electrodes by a successive ionic layer adsorption and reaction (SILAR) method with different numbers of cycles. The average diameter of the QDs was estimated by applying an effective mass approximation to the PA spectra. The increasing size of the QDs with increasing number of cycles was confirmed by a redshift in the optical absorption spectrum. The average diameter of the CdSe QDs on the IO-TiO electrodes was similar to that on the NP-TiO ones, indicating that growth is independent of morphology. However, there were more CdSe QDs on the NP-TiO electrodes than on the IO-TiO ones, indicating that there were different amounts of active sites on each type of electrode. In addition, the Urbach parameter of the exponential optical absorption tail was also estimated from the PA spectrum. The Urbach parameter of CdSe QDs on IO-TiO electrodes was higher than that on NP-TiO ones, indicating that CdSe QDs on IO-TiO electrodes are more disordered states than those on NP-TiO electrodes. The Urbach parameter decreases in both cases with the increase of SILAR cycles, and it tended to move toward a constant value.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/10/1.4825231.html;jsessionid=1eva2aotmq2b4.x-aip-live-02?itemId=/content/aip/journal/adva/3/10/10.1063/1.4825231&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Optical absorption of CdSe quantum dots on electrodes with different morphology
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/10/10.1063/1.4825231
10.1063/1.4825231
SEARCH_EXPAND_ITEM