1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Full counting statistics of a quantum dot doped with a single magnetic impurity
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/3/10/10.1063/1.4825233
1.
1. D. Loss and D. P. DiVincenzo, Phys. Rev. A 57, 120 (1998).
http://dx.doi.org/10.1103/PhysRevA.57.120
2.
2. G. Burkard, D. Loss, and D. P. DiVincenzo, Phys. Rev. B 59, 2070 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.2070
3.
3. F. H. L. Koppens, C. Buizert, K. J. Tielrooij, I. T. Vink, K. C. Nowack, T. Meunier, L. P. Kouwenhoven, and L. M. K. Vandersypen, Nature London 442, 766 (2006).
http://dx.doi.org/10.1038/nature05065
4.
4. J. Fernandez-Rossier and R. Aguado, Phys. Rev. Lett. 98, 106805 (2006).
http://dx.doi.org/10.1103/PhysRevLett.98.106805
5.
5. M. Tolea and B. R. Bułka, Phys. Rev. B 75, 125301 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.125301
6.
6. M. D. Petrović and N. Vukmirović, Phys. Rev. B 85, 195311 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.195311
7.
7. L. D. Contreras-Pulido and R. Aguado, Phys. Rev. B 81, 161309(R) (2010).
http://dx.doi.org/10.1103/PhysRevB.81.161309
8.
8. B. Sothmann and J. König, Phys. Rev. B 82, 245319 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.245319
9.
9. G. Kiesslich, G. Schaller, C. Emary, and T. Brandes, Appl. Phys. Lett. 95, 152104 (2009).
http://dx.doi.org/10.1063/1.3243693
10.
10. Y. M. Blanter and M. Buttiker, Phys. Rep. 336, 1 (2000).
http://dx.doi.org/10.1016/S0370-1573(99)00123-4
11.
11. Yu. V. Nazarov (ed.), Quantum Noise in Mesoscopic Physics, Vol. 97 of NATO Science Series II (Kluwer, Dordrecht, Netherlands, 2003).
12.
12. D. A. Bagrets and Y. V. Nazarov, Phys. Rev. B 67, 085316 (2003).
http://dx.doi.org/10.1103/PhysRevB.67.085316
13.
13. S. K. Wang, H. Jiao, F. Li, X. Q. Li, and Y. J. Yan, Phys. Rev. B 76, 125416 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.125416
14.
14. C. Flindt, C. Fricke, F. Hohls, T. Novotny, K. Netocny, T. Brandes, and R. J. Haug, Proc. Natl. Acad. Sci. U.S.A. 106, 10116 (2009).
http://dx.doi.org/10.1073/pnas.0901002106
15.
15. N. Ubbelohde, C. Fricke, C. Flindt, F. Hohls, and R. J. Haug, Nat. Comms. 3, 612 (2012).
http://dx.doi.org/10.1038/ncomms1620
16.
16. F. Maier and D. Loss, Phys. Rev. B 85, 195323 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.195323
17.
17. K. Ono and S. Tarucha, Phys. Rev. Lett. 92, 256803 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.256803
18.
18. J. Inarrea, G. Platero, and A. H. MacDonald, Phys. Rev. B 76, 085329 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.085329
19.
19. F. H. L. Koppens, J. A. Folk, J. M. Elzerman, R. Hanson, L. H. Willems van Beveren, I. T. Vink, H. P. Tranitz, W. Wegscheider, L. P. Kouwenhoven, and L. M. K. Vandersypen, Science 309, 1346 (2005).
http://dx.doi.org/10.1126/science.1113719
20.
20. O. N. Jouravlev and Y. V. Nazarov, 96, 176804 (2006).
21.
21. X. Q. Li, P. Cui, and Y. J. Yan, Phys. Rev. Lett. 94, 066803 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.066803
22.
22. X. Q. Li, J. Luo, Y. G. Yang, P. Cui, and Y. J. Yan, Phys. Rev. B 71, 205304 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.205304
23.
23. C. W. Groth, B. Michaelis, and C. W. J. Beenakker, Phys. Rev. B 74, 125315 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.125315
24.
24. C. Flindt, T. Novotny, and A. P. Jauho, Europhys. Lett. 69, 475 (2005).
http://dx.doi.org/10.1209/epl/i2004-10351-x
25.
25. J. M. Elzerman, R. Hanson, L. H. Willems van Beveren, B. Witkamp, L. M. K. Vandersypen, and L. P. Kouwenhoven, Nature 430, 431 (2004).
http://dx.doi.org/10.1038/nature02693
26.
26. S. Lindebaum, D. Urban, and J. König, Phys. Rev. B 79, 245303 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.245303
27.
27. H. B. Xue, Y. H. Nie, Z. J. Li, and J. Q. Liang, J. Appl. Phys. 108, 033707 (2010).
http://dx.doi.org/10.1063/1.3467781
28.
28. H. B. Xue, Y. H. Nie, Z. J. Li, and J. Q. Liang, Phys. Lett. A 375, 716 (2011).
http://dx.doi.org/10.1016/j.physleta.2010.12.008
29.
29. H. B. Xue, Y. H. Nie, Z. J. Li, and J. Q. Liang, J. Appl. Phys. 109, 083706 (2011).
http://dx.doi.org/10.1063/1.3569847
30.
30. H. B. Xue, Z. X. Zhang, and H. M. Fei, Eur. Phys. J. B 85, 336 (2012).
http://dx.doi.org/10.1140/epjb/e2012-30402-x
31.
31. S. S. Safonov, A. K. Savchenko, D. A. Bagrets, O. N. Jouravlev, Y. V. Nazarov, E. H. Linfield, and D. A. Ritchie, Phys. Rev. Lett. 91, 136801 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.136801
32.
32. H. B. Xue, Annals of Physics (2013), http://dx.doi.org/10.1016/j.aop.2013.09.001.
33.
33. D. Kambly, C. Flindt, and M. Büttiker, Phys. Rev. B 83, 075432 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.075432
34.
34. G. Schaller, G. Kieß lich, and T. Brandes, Phys. Rev. B 81, 205305 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.205305
35.
35. A. Komnik and H. Saleur, Phys. Rev. Lett. 96, 216406 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.216406
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/10/10.1063/1.4825233
Loading
/content/aip/journal/adva/3/10/10.1063/1.4825233
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/3/10/10.1063/1.4825233
2013-10-10
2014-07-30

Abstract

The full counting statistics of electron transport through a quantum dot (QD) doped with a single magnetic impurity weakly coupled to one ferromagnetic (F) and one normal-metal lead (N) is studied based on an efficient particle-number-resolved master equation. We demonstrate that the current noise properties depend sensitively on whether the source-electrode is the ferromagnetic lead and the type of exchange coupling between the conduction electron and magnetic impurity spin. For the F-QD-N system, namely, the ferromagnetic lead as source electrode and the normal-metal lead as drain one, the super-Poissonian noise in the anti-ferromagnetic coupling case can appear; whereas for the ferromagnetic coupling case the super-Poissonian noise does not appear. As for the N-QD-F system, the super-Poissonian noise in the ferromagnetic coupling case can appear in a relatively large bias voltage range; while for the anti-ferromagnetic coupling case, the super-Poissonian noise appears only in a relatively small bias voltage range. These super-Poissonian noise characteristics can be used to reveal the type of exchange coupling between the conduction electron and magnetic impurity spin, and can be qualitatively attributed to the spin-blockade mechanism and the effective competition between fast and slow transport channels.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/10/1.4825233.html;jsessionid=4cm85kan79ig8.x-aip-live-02?itemId=/content/aip/journal/adva/3/10/10.1063/1.4825233&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Full counting statistics of a quantum dot doped with a single magnetic impurity
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/10/10.1063/1.4825233
10.1063/1.4825233
SEARCH_EXPAND_ITEM