1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Analysis of metamaterial absorber in normal and oblique incidence by using interference theory
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/3/10/10.1063/1.4826522
1.
1. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, Phys. Rev. Lett. 100, 207402 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.207402
2.
2. F. B. P. Niesler, J. K. Gansel, S. Fischbach, and M. Wegener, Appl. Phys. Lett. 100, 203508 (2012).
http://dx.doi.org/10.1063/1.4714741
3.
3. C. M. Watts, X. Liu, and W. J. Padilla, Adv. Mater. 24, Op98 (2012).
4.
4. J. Mei, G. Ma, M. Yang, Z. Yang, W. Wen, and P. Sheng, Nature Communications 3, 756 (2011).
http://dx.doi.org/10.1038/ncomms1758
5.
5. H. B. Zhang, L. W. Deng, P. H. Zhou, L. Zhang, D. M. Cheng, H. Y. Chen, D. F. Liang, and L. J. Deng, J. Appl. Phys. 113, 013903 (2013).
http://dx.doi.org/10.1063/1.4772622
6.
6. Y. Z. Cheng, Y. Wang, Y. Nie, R. Z. Gong, X. Xiong, and X. Wang, J. Appl. Phys. 111, 044902 (2012).
http://dx.doi.org/10.1063/1.3684553
7.
7. J. Zhong, Y. Huang, G. Wen, H. Sun, P. Wang, and O. Gordon, Appl. Phys. A 108, 329 (2012).
http://dx.doi.org/10.1007/s00339-012-6989-0
8.
8. X. Huang, H. Yang, S. Yu, J. Wang, M. Li, and Q. Ye, J. Appl. Phys. 113, 213516 (2013).
http://dx.doi.org/10.1063/1.4809655
9.
9. Q. Y. Wen, H. W. Zhang, Y. S. Xie, Q. H. Yang, and Y. L. Liu, Appl. Phys. Lett. 95, 241111 (2009).
http://dx.doi.org/10.1063/1.3276072
10.
10. J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, Appl. Phys. Lett. 96, 251104 (2010).
http://dx.doi.org/10.1063/1.3442904
11.
11. K. B. Alici, A. B. Turhan, C. M. Soukoulis, and E. Ozbay, Opt. Express 19, 14260 (2011).
http://dx.doi.org/10.1364/OE.19.014260
12.
12. H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, Opt. Express 16, 7181 (2008).
http://dx.doi.org/10.1364/OE.16.007181
13.
13. Q. Y. Wen, Y. S. Xie, H. W. Zhang, Q. H. Yang, Y. X. Li, and Y. L. Liu, Opt. Express 17, 20256 (2009).
http://dx.doi.org/10.1364/OE.17.020256
14.
14. Y. Pang, Y. J. Zhou, and J. Wang, J. Appl. Phys. 110, 023704 (2011).
http://dx.doi.org/10.1063/1.3608169
15.
15. Y. Pang, H. Cheng, Y. Zhou, and J. Wang, J. Appl. Phys. 113, 114902 (2013).
http://dx.doi.org/10.1063/1.4795277
16.
16. H. T. Chen, Opt. Express 20, 7165 (2012).
http://dx.doi.org/10.1364/OE.20.007165
17.
17. J. A. Kong, Electromagnetic Wave Theory (Wiley, 1986).
18.
18. D. M. Pozar, Microwave Engineering (Wiley, 2005).
19.
19. E. Wolf and M. Born, Principles of Optics (Cambridge university Press, 1999).
20.
20. W. W. Salisbury, U.S. patent 2 599 944, June 10, 1952.
21.
21. L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S. N. Luo, A. K. Azad, A. J. Taylor, and H. T. Chen, Appl. Phys. Lett. 101, 101102 (2012).
http://dx.doi.org/10.1063/1.4749823
22.
22. X. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, and T. J. Cui, Appl. Phys. Lett. 101, 154102 (2012).
http://dx.doi.org/10.1063/1.4757879
23.
23. H. T. Chen, J. F. Zhou, J. F. OHara, F. Chen, A. K. Azad, and A. J. Taylor, Phys. Rev. Lett. 105, 073901 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.073901
24.
24. H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, Phys. Rev. B 78, 241103(R) (2008).
http://dx.doi.org/10.1103/PhysRevB.78.241103
25.
25. W. Zhu, Y. Huang, I. D. Rukhlenko, G. Wen, and M. Premaratne, Opt. Express 20(6), 6616 (2012).
http://dx.doi.org/10.1364/OE.20.006616
26.
26. R. L. Fante and M. T. McComack, IEEE Transactions on Antennas and Propagation 36, 1443 (1988).
http://dx.doi.org/10.1109/8.8632
27.
27. Engheta, IEEE Antennas and Propagation Society international Symposium 2, 392 (2002).
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/10/10.1063/1.4826522
Loading
/content/aip/journal/adva/3/10/10.1063/1.4826522
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/3/10/10.1063/1.4826522
2013-10-18
2014-09-21

Abstract

Metamaterial absorber (MMA), which is a kind of electromagnetic absorber consisting of sub-wavelength metamaterial resonators and can exhibit near-perfect absorption characteristics, has been widely investigated in recently years. The impedance matching theory was proposed to analyze the configuration of MMA in most literatures. Such theory, however, may not suitable to analyze the interactions of metamaterial resonators and the ground plane. The interference theory, on another hand, can play effective approach for this kind of problem presented in recent studies, whereas little attention has been paid on the oblique incidence conditions. In this paper, we firstly extend the interference theory model to make it applicable for oblique incident waves and analyze MMA using the extended interference theory model. Secondly, we further explore the for the maximum absorptivity at both normal and oblique incidence cases. Thirdly, with the , we can obtain the absorbing frequency directly if the thickness of MMA is given. These theoretical results have significant effects on the design and analyze of MMA. And lastly, we point out that absorptivity is not absolutely insensitive to the incidence angle in TM mode as what previous study claims, but insensitive when the dielectric slab is high loss, which can also be explained by interference theory.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/10/1.4826522.html;jsessionid=934c9akssmqds.x-aip-live-03?itemId=/content/aip/journal/adva/3/10/10.1063/1.4826522&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Analysis of metamaterial absorber in normal and oblique incidence by using interference theory
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/10/10.1063/1.4826522
10.1063/1.4826522
SEARCH_EXPAND_ITEM