1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Diode behavior in ultra-thin low temperature ALD grown zinc-oxide on silicon
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/3/10/10.1063/1.4826583
1.
1. P. Jackson, D. Hariskos, E. Lotter et al., “New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%,” Progress in Photovoltaics: Research and Applications, 19, 894897, (2011).
http://dx.doi.org/10.1002/pip.1078
2.
2. A. Gupta and A. D. Compaan, “14% CdS/CdTe thin film cells with ZnO:Al TCO,” in Proceedings of the MRS Spring Meeting, pp. 16, San Francisco, Calif, USA, 2003.
3.
3. U. Rau and M. Schmidt, “Electronic properties of ZnOCd- SCu(In, Ga)Se2 solar cells—aspects of heterojunction formation,” Thin Solid Films 387, 141146, (2001).
http://dx.doi.org/10.1016/S0040-6090(00)01737-5
4.
4. R. L. Hoffman, B. J. Norris, and J. F. Wager, “ZnO-based transparent thin-film transistors,” Appl. Phys. Lett. 82, 733735 (2003).
http://dx.doi.org/10.1063/1.1542677
5.
5. R. L. Hoffman, “ZnO-channel thin-film transistors: Channel mobility,” J. Appl. Phys. 95, 58135819 (2004).
http://dx.doi.org/10.1063/1.1712015
6.
6. E. M. C. Fortunato, P. M. C. Barquinha, A. C. M. B. G. Pimentel, A. M. F. Goncalves, A. J. S. Marques, R. F. P. Martins, and L. M. N. Pereira, “Wide-bandgap high-mobility ZnO thin-film transistors produced at room temperature,” Appl. Phys. Lett. 85, July 2004.
http://dx.doi.org/10.1063/1.1790587
7.
7. E. M. C. Fortunato, P. M. C. Barquinha, A. C. M. B. G. Pimentel, A. M. F. Goncalves, A. J. S. Marques, L. M. N. Pereira, and R. F. P. Martins, “Fully Transparent ZnO Thin-Film Transistor Produced at Room Temperature,” Adv. Mater. 17, 590594, March, 2005.
http://dx.doi.org/10.1002/adma.200400368
8.
8. H. Yabuta, M. Sano, K. Abe, T. Aiba, T. Den, H. Kumomi, K. Nomura, T. Kamiya, and H. Hosono, “High-mobility thin-film transistor with amorphous InGaZnO∼4 channel fabricated by room temperature rf-magnetron sputtering,” Appl. Phys. Lett. 89 (2006).
http://dx.doi.org/10.1063/1.2353811
9.
9. M. J. Chen, J. R. Yang, and M. Shiojiri, “ZnO-based ultra-violet light emitting diodes and nanostructures fabricated by atomic layer deposition,” Semiconductor Science and Technology 27 (2012).
http://dx.doi.org/10.1088/0268-1242/27/7/074005
10.
10. N. Huby, S. Ferrari, E. Guziewicz, M. Godlewski, and V. Osinniy, “Electrical behavior of zinc oxide layers grown by low temperature atomic layer deposition,” Appl. Phys. Lett. 92 (2008).
http://dx.doi.org/10.1063/1.2830940
11.
11. S. Kwon, S. Bang, S. Lee, W. Jeong, H. Kim, S. C. Gong, H. J. Chang, H.-h. Park, and H. Jeon, “Characteristics of the ZnO thin film transistor by atomic layer deposition at various temperatures,” Semicond. Sci. Technol. 24, March 2009.
http://dx.doi.org/10.1088/0268-1242/24/3/035015
12.
12. J. Siddiqui, E. Cagin, D. Chen, and J. D. Phillips, “ZnO thin-film transistors with polycrystalline(Ba,Sr)TiO3 gate insulators,” Appl. Phys. Lett. 88 (2006).
http://dx.doi.org/10.1063/1.2204574
13.
13. D. Kim, H. Kang, J.-M. Kim, and H. Kim, “The properties of plasma-enhanced atomic layer deposition (ALD) ZnO thin films and comparison with thermal ALD,” Appl. Surf. Sci. 257, 37763779, Feburary 2011.
http://dx.doi.org/10.1016/j.apsusc.2010.11.138
14.
14. H. S. Kim, F. Lugo, S. J. Pearton, D. P. Norton, Yu-Lin Wang, and F. Ren, “Phosphorus doped ZnO light emitting diodes fabricated via pulsed layer deposition,” Appl. Phys. Lett. 92 (2008).
http://dx.doi.org/10.1063/1.2900711
15.
15. F. B. Oruc, F. Cimen, A. Rizk, M. Ghaffari, A. Nayfeh, A. K. Okyay, “Thin-Film ZnO Charge-Trapping Memory Cell Grownin a Single ALD Step,” Electron Device Lett. 33, 17141716 (2012).
http://dx.doi.org/10.1109/LED.2012.2219493
16.
16. M. Lanza, L. Aguilera, M. Porti, M. Nafria, and X. Aymerich, “Improving the electrical performance of a CAFM for gate oxide reliability measurements,” Electron Devices (2009).
17.
17. J. H. Hea and C. H. Ho, “The study of electrical characteristics of heterojunction based on ZnO nanowires using ultrahigh-vacuum conducting atomic force microscopy,” Appl. Phys. Lett. 91 December 2007.
http://dx.doi.org/10.1063/1.2821831
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/10/10.1063/1.4826583
Loading
/content/aip/journal/adva/3/10/10.1063/1.4826583
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/3/10/10.1063/1.4826583
2013-10-18
2014-08-30

Abstract

A thin-film ZnO(n)/Si(p+) heterojunction diode is demonstrated. The thin film ZnO layer is deposited by Atomic Layer Deposition (ALD) at different temperatures on a p-type silicon substrate. Atomic force microscopy (AFM) AC-in-Air method in addition to conductive AFM (CAFM) were used for the characterization of ZnO layer and to measure the current-voltage characteristics. Forward and reverse bias n-p diode behavior with good rectification properties is achieved. The diode with ZnO grown at 80C exhibited the highest on/off ratio with a turn-on voltage (V) ∼3.5 V. The measured breakdown voltage (V) and electric field (E) for this diode are 5.4 V and 3.86 MV/cm, respectively.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/10/1.4826583.html;jsessionid=hfe674n8grs8.x-aip-live-02?itemId=/content/aip/journal/adva/3/10/10.1063/1.4826583&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Diode behavior in ultra-thin low temperature ALD grown zinc-oxide on silicon
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/10/10.1063/1.4826583
10.1063/1.4826583
SEARCH_EXPAND_ITEM