Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, J. Am. Chem. Soc. 130, 3296 (2008).
2. M. Rotter, M. Tegel, and D. Johrendt, Phys. Rev. Lett. 101, 107006 (2008).
3. X. Wang, Q. Liu, Y. Lv, W. Gao, L. Yang, R. Yu, F. Li, and C. Jin, Solid State Commun. 148, 538 (2008).
4. F. Hsu, J. Luo, K. Yeh, T. Chen, T. Huang, P. Wu, Y. Lee, Y. Huang, Y. Chu, D. Yan, and M. K. Wu, Proc. Nat. Acad. Sci. 105, 14262 (2008).
5. D. Vaknin, S. K. Sinha, D. E. Moncton, D. C. Johnston, J. M. Newsam, C. R. Safinya, and H. E. King, Jr., Phys. Rev. Lett. 58, 2802 (1987).
6. Y. Tokura, H. Takagi, and S. Uchida, Nature 337, 345 (1989).
7. H. H. Wen, G. Mu, L. Fang, H. Yang, and X. Y. Zhu, Europhys. Lett. 82, 17009 (2008).
8. A. S. Sefat, R. Y. Jin, M. A. McGuire, B. C. Sales, D. J. Singh, and D. Mandrus, Phys. Rev. Lett. 101, 117004 (2008).
9. S. R. Saha, N. P. Butch, T. Drye, J. Magill, S. Ziemak, K. Kirshenbaum, P. Y. Zavalij, J. W. Lynn, and J. Paglione, Phys. Rev. B 85, 024525 (2012).
10. Z. Gao, Y. Qi, L. Wang, D. Wang, X. Zhang, C. Yao, C. Wang, and Y. Ma, Europhys. Lett. 95, 67002 (2011).
11. B. Lv, L. Deng, M. Gooch, F. Wei, Y. Sun, J. K. Meen, Y. Y. Xue, B. Lorenz, and C. W. Chu, Proc. Nat. Acad. Sci. 108, 15705 (2011).
12. Y. Qi, Z. Gao, L. Wang, D. Wang, X. Zhang, C. Yao, C. Wang, C. Wang, and Y. Ma, Supercond. Sci. Technol. 25, 045007 (2012).
13. J. J. Ying, J. C. Liang, X. G. Luo, X. F. Wang, Y. J. Yan, M. Zhang, A. F. Wang, Z. J. Xiang, G. J. Ye, P. Cheng, and X. H. Chen, Phys. Rev. B 85, 144514 (2012).
14. T. Tamegai, Q. P. Ding, T. Ishibashi, and Y. Nakajima, Physica C 484, 31 (2012).
15. A. I. Goldman, D. N. Argyriou, B. Ouladdiaf, T. Chatterji, A. Kreyssig, S. Nandi, N. Ni, S. L. Bud'ko, P. C. Canfield, and R. J. McQueeney, Phys. Rev. B 78, 100506 (2008).
16. C. Lester, J. H. Chu, J. G. Analytis, S. C. Capelli, A. S. Erickson, C. L. Condron, M. F. Toney, I. R. Fisher, and S. M. Hayden, Phys. Rev. B 79, 144523 (2009).
17. D. K. Pratt, W. Tian, A. Kreyssig, J. L. Zarestky, S. Nandi, N. Ni, S. L. Bud'ko, P. C. Canfield, A. I. Goldman, and R. J. McQueeney, Phys. Rev. Lett. 103, 087001 (2009).
18. L. Harnagea, S. Singh, G. Friemel, N. Leps, D. Bombor, M. Abdel-Hafiez, A. U. B. Wolter, C. Hess, R. Klingeler, G. Behr, S. Wurmehl, and B. Büchner, Phys. Rev. B 83, 094523 (2011).
19. N. Ni, A. Thaler, A. Kracher, J. Q. Yan, S. L. Bud'ko, and P. C. Canfield, Phys. Rev. B 80, 024511 (2009).
20. N. Ni, A. Thaler, J. Q. Yan, A. Kracher, E. Colombier, S. L. Bud'ko, and P. C. Canfield, Phys. Rev. B 82, 024519 (2010).
21. N. Ni, M. E. Tillman, J. Q. Yan, A. Kracher, S. T. Hannahs, S. L. Bud'ko, and P. C. Canfield, Phys. Rev. B 78, 214515 (2008).
22. H. Chen, Y. Ren, Y. Qiu, W. Bao, R. H. Liu, G. Wu, T. Wu, Y. L. Xie, X. F. Wang, Q. Huang, and X. H. Chen, Europhys. Lett. 85, 8517006 (2009).
23. Y. Muraba, S. Matsuishi, S. W. Kim, T. Atou, O. Fukunaga, and H. Hosono, Phys. Rev. B 82, 180512 (2010).
24. L. Fang, H. Luo, P. Cheng, Z. Wang, Y. Jia, G. Mu, B. Shen, I. I. Mazin, L. Shan, C. Ren, and H. H. Wen, Phys. Rev. B 80, 140508 (2009).
25. P. Cheng, H. Yang, Y. Jia, L. Fang, X. Y. Zhu, G. Mu, and H. H. Wen, Phys. Rev. B 78, 134508 (2008).
26. Y. Sun, Y. Ding, B. C. Zheng, Z. X. Shi, and Z. A. Ren, J. Appl. Phys. 109, 083914 (2011).
27. E. Colombier, S. L. Bud'ko, N. Ni, and P. C. Canfield, Phys. Rev. B 79, 224518 (2009).
28. S. Ran, S. L. Bud'ko, W. E. Straszheim, J. Soh, M. G. Kim, A. Kreyssig, A. I. Goldman, and P. C. Canfield, Phys. Rev. B 85, 224528 (2012).
29. S. R. Saha, N. P. Butch, K. Kirshenbaum, J. Paglione, and P. Y. Zavalij, Phys. Rev. Lett. 103, 037005 (2009).
30. Y. Sun, Y. Tsuchiya, T. Yamada, T. Taen, S. Pyon, Z. Shi, and T. Tamegai, J. Phys. Soc. Jpn. 82, 093705 (2013).
31. Y. Sun, T. Taen, Y. Tsuchiya, Z. X. Shi, and T. Tamegai, Supercond. Sci. Technol. 26, 015015 (2013).
32. S. K. Goh, L. E. Klintberg, J. M. Silver, F. M. Grosche, S. R. Saha, T. Drye, J. Paglione, and M. Sutherland, arXiv:1107.0689v1 (unpublished).
33. Y. Jia, P. Cheng, L. Fang, H. Q. Luo, H. Yang, C. Ren, L. Shan, C. Z. Gu, and H. H. Wen, Appl. Phys. Lett. 93, 032503 (2008).
34. Y. Sun, Y. Ding, J. C. Zhuang, L. J. Cui, X. P. Yuan, Z. X. Shi, and Z. A. Ren, Supercond. Sci. Technol. 24, 085011 (2011).
35. N. R. Werthamer, E. Helfand, and P. C. Hohenberg, Phys. Rev. 147, 295 (1966).
36. W. Zhou, F. F. Yuan, J. C. Zhuang, Y. Sun, Y. Ding, L. J. Cui, J. Bai, and Z. X. Shi, Supercond. Sci. Technol. 26, 095003 (2013).
37. D. Allender, J. Bray, and J. Bardeen, Phys. Rev. B 7, 1020 (1973).

Data & Media loading...


Article metrics loading...



Single crystals of CaLaFeAs with ranging from 0 to 0.25, have been grown and characterized by structural, transport, and magnetic measurements. Coexistence of two superconducting phases is observed, in which the phase with the lower superconducting transition temperature ( ) has ∼ 20 K and the higher phase has higher than 40 K. These data also delineate an - phase diagram in which the single magnetic/structural phase transition in undoped CaFeAs appears to split into two distinct phase transitions, both of which are suppressed with increasing La substitution. Superconductivity emerges when is about 0.06 and coexists with the structural/magnetic transition until is 0.13. With increasing concentration of La, the structural/magnetic transition is totally suppressed, and reaches its maximum value of about 45 K for 0.15 ⩽ ⩽ 0.19. A domelike superconducting region is not observed in the phase diagram, however, because no obvious over-doping region can be found. Two superconducting phases coexist in the - phase diagram of CaLaFeAs. The formation of the two separate phases and the origin of the high in CaLaFeAs have been studied and discussed in detail.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd