1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Evidence of two superconducting phases in Ca1−x La x Fe2As2
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/3/10/10.1063/1.4826584
1.
1. Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, J. Am. Chem. Soc. 130, 3296 (2008).
http://dx.doi.org/10.1021/ja800073m
2.
2. M. Rotter, M. Tegel, and D. Johrendt, Phys. Rev. Lett. 101, 107006 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.107006
3.
3. X. Wang, Q. Liu, Y. Lv, W. Gao, L. Yang, R. Yu, F. Li, and C. Jin, Solid State Commun. 148, 538 (2008).
http://dx.doi.org/10.1016/j.ssc.2008.09.057
4.
4. F. Hsu, J. Luo, K. Yeh, T. Chen, T. Huang, P. Wu, Y. Lee, Y. Huang, Y. Chu, D. Yan, and M. K. Wu, Proc. Nat. Acad. Sci. 105, 14262 (2008).
http://dx.doi.org/10.1073/pnas.0807325105
5.
5. D. Vaknin, S. K. Sinha, D. E. Moncton, D. C. Johnston, J. M. Newsam, C. R. Safinya, and H. E. King, Jr., Phys. Rev. Lett. 58, 2802 (1987).
http://dx.doi.org/10.1103/PhysRevLett.58.2802
6.
6. Y. Tokura, H. Takagi, and S. Uchida, Nature 337, 345 (1989).
http://dx.doi.org/10.1038/337345a0
7.
7. H. H. Wen, G. Mu, L. Fang, H. Yang, and X. Y. Zhu, Europhys. Lett. 82, 17009 (2008).
http://dx.doi.org/10.1209/0295-5075/82/17009
8.
8. A. S. Sefat, R. Y. Jin, M. A. McGuire, B. C. Sales, D. J. Singh, and D. Mandrus, Phys. Rev. Lett. 101, 117004 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.117004
9.
9. S. R. Saha, N. P. Butch, T. Drye, J. Magill, S. Ziemak, K. Kirshenbaum, P. Y. Zavalij, J. W. Lynn, and J. Paglione, Phys. Rev. B 85, 024525 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.024525
10.
10. Z. Gao, Y. Qi, L. Wang, D. Wang, X. Zhang, C. Yao, C. Wang, and Y. Ma, Europhys. Lett. 95, 67002 (2011).
http://dx.doi.org/10.1209/0295-5075/95/67002
11.
11. B. Lv, L. Deng, M. Gooch, F. Wei, Y. Sun, J. K. Meen, Y. Y. Xue, B. Lorenz, and C. W. Chu, Proc. Nat. Acad. Sci. 108, 15705 (2011).
http://dx.doi.org/10.1073/pnas.1112150108
12.
12. Y. Qi, Z. Gao, L. Wang, D. Wang, X. Zhang, C. Yao, C. Wang, C. Wang, and Y. Ma, Supercond. Sci. Technol. 25, 045007 (2012).
http://dx.doi.org/10.1088/0953-2048/25/4/045007
13.
13. J. J. Ying, J. C. Liang, X. G. Luo, X. F. Wang, Y. J. Yan, M. Zhang, A. F. Wang, Z. J. Xiang, G. J. Ye, P. Cheng, and X. H. Chen, Phys. Rev. B 85, 144514 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.144514
14.
14. T. Tamegai, Q. P. Ding, T. Ishibashi, and Y. Nakajima, Physica C 484, 31 (2012).
http://dx.doi.org/10.1016/j.physc.2012.01.020
15.
15. A. I. Goldman, D. N. Argyriou, B. Ouladdiaf, T. Chatterji, A. Kreyssig, S. Nandi, N. Ni, S. L. Bud'ko, P. C. Canfield, and R. J. McQueeney, Phys. Rev. B 78, 100506 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.100506
16.
16. C. Lester, J. H. Chu, J. G. Analytis, S. C. Capelli, A. S. Erickson, C. L. Condron, M. F. Toney, I. R. Fisher, and S. M. Hayden, Phys. Rev. B 79, 144523 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.144523
17.
17. D. K. Pratt, W. Tian, A. Kreyssig, J. L. Zarestky, S. Nandi, N. Ni, S. L. Bud'ko, P. C. Canfield, A. I. Goldman, and R. J. McQueeney, Phys. Rev. Lett. 103, 087001 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.087001
18.
18. L. Harnagea, S. Singh, G. Friemel, N. Leps, D. Bombor, M. Abdel-Hafiez, A. U. B. Wolter, C. Hess, R. Klingeler, G. Behr, S. Wurmehl, and B. Büchner, Phys. Rev. B 83, 094523 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.094523
19.
19. N. Ni, A. Thaler, A. Kracher, J. Q. Yan, S. L. Bud'ko, and P. C. Canfield, Phys. Rev. B 80, 024511 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.024511
20.
20. N. Ni, A. Thaler, J. Q. Yan, A. Kracher, E. Colombier, S. L. Bud'ko, and P. C. Canfield, Phys. Rev. B 82, 024519 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.024519
21.
21. N. Ni, M. E. Tillman, J. Q. Yan, A. Kracher, S. T. Hannahs, S. L. Bud'ko, and P. C. Canfield, Phys. Rev. B 78, 214515 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.214515
22.
22. H. Chen, Y. Ren, Y. Qiu, W. Bao, R. H. Liu, G. Wu, T. Wu, Y. L. Xie, X. F. Wang, Q. Huang, and X. H. Chen, Europhys. Lett. 85, 8517006 (2009).
23.
23. Y. Muraba, S. Matsuishi, S. W. Kim, T. Atou, O. Fukunaga, and H. Hosono, Phys. Rev. B 82, 180512 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.180512
24.
24. L. Fang, H. Luo, P. Cheng, Z. Wang, Y. Jia, G. Mu, B. Shen, I. I. Mazin, L. Shan, C. Ren, and H. H. Wen, Phys. Rev. B 80, 140508 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.140508
25.
25. P. Cheng, H. Yang, Y. Jia, L. Fang, X. Y. Zhu, G. Mu, and H. H. Wen, Phys. Rev. B 78, 134508 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.134508
26.
26. Y. Sun, Y. Ding, B. C. Zheng, Z. X. Shi, and Z. A. Ren, J. Appl. Phys. 109, 083914 (2011).
http://dx.doi.org/10.1063/1.3573667
27.
27. E. Colombier, S. L. Bud'ko, N. Ni, and P. C. Canfield, Phys. Rev. B 79, 224518 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.224518
28.
28. S. Ran, S. L. Bud'ko, W. E. Straszheim, J. Soh, M. G. Kim, A. Kreyssig, A. I. Goldman, and P. C. Canfield, Phys. Rev. B 85, 224528 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.224528
29.
29. S. R. Saha, N. P. Butch, K. Kirshenbaum, J. Paglione, and P. Y. Zavalij, Phys. Rev. Lett. 103, 037005 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.037005
30.
30. Y. Sun, Y. Tsuchiya, T. Yamada, T. Taen, S. Pyon, Z. Shi, and T. Tamegai, J. Phys. Soc. Jpn. 82, 093705 (2013).
http://dx.doi.org/10.7566/JPSJ.82.093705
31.
31. Y. Sun, T. Taen, Y. Tsuchiya, Z. X. Shi, and T. Tamegai, Supercond. Sci. Technol. 26, 015015 (2013).
http://dx.doi.org/10.1088/0953-2048/26/1/015015
32.
32. S. K. Goh, L. E. Klintberg, J. M. Silver, F. M. Grosche, S. R. Saha, T. Drye, J. Paglione, and M. Sutherland, arXiv:1107.0689v1 (unpublished).
33.
33. Y. Jia, P. Cheng, L. Fang, H. Q. Luo, H. Yang, C. Ren, L. Shan, C. Z. Gu, and H. H. Wen, Appl. Phys. Lett. 93, 032503 (2008).
http://dx.doi.org/10.1063/1.2963361
34.
34. Y. Sun, Y. Ding, J. C. Zhuang, L. J. Cui, X. P. Yuan, Z. X. Shi, and Z. A. Ren, Supercond. Sci. Technol. 24, 085011 (2011).
http://dx.doi.org/10.1088/0953-2048/24/8/085011
35.
35. N. R. Werthamer, E. Helfand, and P. C. Hohenberg, Phys. Rev. 147, 295 (1966).
http://dx.doi.org/10.1103/PhysRev.147.295
36.
36. W. Zhou, F. F. Yuan, J. C. Zhuang, Y. Sun, Y. Ding, L. J. Cui, J. Bai, and Z. X. Shi, Supercond. Sci. Technol. 26, 095003 (2013).
http://dx.doi.org/10.1088/0953-2048/26/9/095003
37.
37. D. Allender, J. Bray, and J. Bardeen, Phys. Rev. B 7, 1020 (1973).
http://dx.doi.org/10.1103/PhysRevB.7.1020
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/10/10.1063/1.4826584
Loading
/content/aip/journal/adva/3/10/10.1063/1.4826584
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/3/10/10.1063/1.4826584
2013-10-18
2014-07-29

Abstract

Single crystals of CaLaFeAs with ranging from 0 to 0.25, have been grown and characterized by structural, transport, and magnetic measurements. Coexistence of two superconducting phases is observed, in which the phase with the lower superconducting transition temperature ( ) has ∼ 20 K and the higher phase has higher than 40 K. These data also delineate an - phase diagram in which the single magnetic/structural phase transition in undoped CaFeAs appears to split into two distinct phase transitions, both of which are suppressed with increasing La substitution. Superconductivity emerges when is about 0.06 and coexists with the structural/magnetic transition until is 0.13. With increasing concentration of La, the structural/magnetic transition is totally suppressed, and reaches its maximum value of about 45 K for 0.15 ⩽ ⩽ 0.19. A domelike superconducting region is not observed in the phase diagram, however, because no obvious over-doping region can be found. Two superconducting phases coexist in the - phase diagram of CaLaFeAs. The formation of the two separate phases and the origin of the high in CaLaFeAs have been studied and discussed in detail.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/10/1.4826584.html;jsessionid=3k1q29espvi1f.x-aip-live-02?itemId=/content/aip/journal/adva/3/10/10.1063/1.4826584&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Evidence of two superconducting phases in Ca1−xLaxFe2As2
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/10/10.1063/1.4826584
10.1063/1.4826584
SEARCH_EXPAND_ITEM