Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. N. S. Sariciftci, L. Smilowitz, A. J. Heeger, and F. Wudl, Science 258, 1474 (1992).
2. G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and Alan J. Heeger, Science 270, 1789 (1995).
3. Z. He, C. Zhong, S. Su, M. Xu, H. Wu, and Y. Cao, Nat. Photon. 6, 591 (2012).
4. M. Jørgensen, K. Norrman, and F. C. Krebs, Sol. Energy Mater. Sol. Cells 92, 686 (2008).
5. M. Jorgensen, K. Norrman, S. A. Gevorgyan, T. Tromholt, B. Andreasen, and F. C. Krebs, Adv. Mater. 24, 580 (2012).
6. M. O. Reese, A. M. Nardes, B. L. Rupert, R. E. Larsen, D. C. Olson, M. T. Lloyd, S. E. Shaheen, D. S. Ginley, G. Rumbles, and N. Kopidakis, Adv. Funct. Mater. 20, 3476 (2010).
7. A. Kumar, R. Devine, C. Mayberry, B. Lei, G. Li, and Y. Yang, Adv. Funct. Mater. 20, 2729 (2010).
8. T. Tromholt, M. Manceau, M. Helgesen, J. E. Carle, and F. C. Krebs, Sol. Energy Mater. Sol. Cells 95, 1308 (2011).
9. T. Tromholt, E. Katz, B. Hirsch, A. Vossier, and F. C. Krebs, Appl. Phys. Lett. 96, 073501 (2010).
10. N. Espinosa, R. Garcia-Valverde, A. Urbina, and F. C. Krebs, Sol. Energy Mater. Sol. Cells 95, 1293 (2011).
11. G. Teran-Escobar, J. Pampel, J. M. Caicedo, and M. Lira-Cantu, Energy Environ. Sci. 6, 3088 (2013).
12. H. Yip and A. K.-Y. Jen, Energy Environ. Sci. 5, 5994 (2012).
13. C. Chen, Y. Chen, and S. Chuang, Adv. Mater. 23, 3859 (2011).
14. X. Wang, C. X. Zhao, G. Xu, Z.-K. Chen, and F. Zhu, Sol. Energy Mater. Sol. Cells 104, 1 (2012).
15. F. C. Krebs and K. Norrman, Prog. Photovoltaics 15, 697 (2007).
16. K. Kawano, R. Pacios, D. Poplavskyy, J. Nelson, D. D. C. Bradley, and J. R. Durrant, Sol. Energy Mater. Sol. Cells 90, 3520 (2006).
17. S. Bertho, I. Haeldermans, A. Swinnen, W. Moons, T. Martens, L. Lutsen, D. Vanderzande, J. Manca, A. Senes, and A. Bonfiglio, Sol. Energy Mater. Sol. Cells 91, 385 (2007).
18. B. Paci, A. Generosi, V. Rossi Albertini, R. Generosi, P. Perfetti, R. de Bettignies, and C. Sentein, J. Phys. Chem. C. 112, 9931 (2008).
19. H. Neugebauer, C. Brabec, J. C. Hummelen, and N. S. Sariciftci, Sol. Energy Mater. Sol. Cells 61, 35 (2000).
20. C. L. Huisman, A. Goossens, and J. Schoonman, J. Phys. Chem. B 106, 10578 (2002).
21. K. Kawano and C. Adachi, Adv. Funct. Mater. 19, 3934 (2009).
22. M. Logdlund and J. L. Bredas, J. Chem. Phys. 101, 4357 (1994).
23. M. O. Reese, A. J. Morfa, M. S. White, N. Kopidakis, S. E. Shaheen, G. Rumbles, and D. S. Ginley, Sol. Energy Mater. Sol. Cells 92, 746 (2008).
24. A. Moujoud, S. H. Oh, J. J. Hye, and H. J. Kim, Sol. Energy Mater. Sol. Cells 95, 1037 (2011).
25. J. W. Jung, J. W. Jo, and W. H. Jo, Adv. Mater. 23, 1782 (2011).
26. G. Garcia-Belmonte, A. Munar, E. M. Barea, J. Bisquert, I. Ugarte, and R. Pacios, Org. Electron. 9, 847 (2008).
27. J. Lorrmann, B. H. Badada, O. Inganas, V. Dyakonov, and C. Deibel, J. Appl. Phys. 108, 113705 (2010).
28. A. Guerrero, P. P. Boix, L. F. Marchesi, T. Ripolles-Sanchis, E. C. Pereira, and G. Garcia-Belmonte, Sol. Energy Mater. Sol. Cells 100, 185 (2012).
29. J. R. Macdonald, Impedance Spectroscopy-Emphasizing Solid Materials and Systems. (Wiley-Interscience, New York, 1987).
30. K. Norrman, M. V. Madsen, S. A. Gevorgyan, and F. C. Krebs, J. Am. Chem. Soc. 132, 16883 (2010).
31. J. W. Nilsson and S. A. Riedel, Electric Circuits, 8 ed. (Prentice Hall, New York, 2008).
32. B. Streetman and S. K. Banerjee, Solid state electronic devices, 6 ed. (Pearson Prentice-Hall, 2009).
33. S. Dimitrijev, Principles of semiconductor devices, 2 ed. (Oxford Univ. Press, New York, 2011).
34. R. I. Gearba, T. Mills, J. Morris, R. Pindak, C. T. Black, and X. Zhu, Adv. Funct. Mater. 21, 2666 (2011).
35. E. Verploegen, R. Mondal, C. J. Bettinger, S. Sok, M. F. Toney, and Z. Bao, Adv. Funct. Mater. 20, 3519 (2010).
36. R. C. Nieuwendaal, H. W. Ro, D. S. Germack, R. J. Kline, M. F. Toney, C. K. Chan, A. Agrawal, D. Gundlach, D. L. VanderHart, and D. M. Delongchamp, Adv. Funct. Mater. 22, 1255 (2012).
37. M. T. Lloyd, D. C. Olson, P. Lu, E. Fang, D. L. Moore, M. S. White, M. O. Reese, D. S. Ginley, and J. W. P. Hsu, J. Mater. Chem. 19, 7638 (2009).
38. B. A. Gregg, Soft Matter 5, 2985 (2009).
39. S. Roberts, Ph.D. Thesis, Massachusetts Institute of Technology, 1946.

Data & Media loading...


Article metrics loading...



The investigation of the stability in organic photovoltaics has been focused on individual components via localized and destructive analysis, which is limited to broken devices, instead of an operational OPV, and unable to obtain correlated information of degrading interfaces. DC biased AC impedance spectroscopy is employed here, to track multi-interface degradation without breaking the device. By varying DC bias, individual interface degradation is revealed via current density and capacitance versus voltage plots. While one of the impedance semicircles is linked to the interface of P3HT:PCBM, the other represented the interface between the mixture and metal electrode, involving metal oxide in an aged device. The results confirm that, more than one degradation process take place simultaneously at individual interfaces.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd