1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Quantum-mechanical calculation of carrier distribution in MOS accumulation and strong inversion layers
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/3/10/10.1063/1.4826886
1.
1. L. Wang, D. Wang, and P. M. Asbeck, Solid-State Electron. 50, 1732 (2006).
http://dx.doi.org/10.1016/j.sse.2006.09.013
2.
2. F. Stern and W. E. Howard, Phys. Rev. 163, 816 (1967).
http://dx.doi.org/10.1103/PhysRev.163.816
3.
3. A. P. Gnädinger and H. E. Talley, Solid-State Electron. 13, 1301 (1970).
http://dx.doi.org/10.1016/0038-1101(70)90027-4
4.
4. T. Ando, A. B. Fowler, and F. Stem, Rev. Mod. Phys. 54, 437 (1982).
http://dx.doi.org/10.1103/RevModPhys.54.437
5.
5. J. Suñé, P. Olivo, and B. Riccó, J. Appl. Phys. 70, 337 (1991).
http://dx.doi.org/10.1063/1.350278
6.
6. F. Stern, Phys. Rev. B 5, 4891 (1972).
http://dx.doi.org/10.1103/PhysRevB.5.4891
7.
7. D. G. Zill and M. R. Cullen, Differential Equations with Boundary-Value Problems, Fifth Edition (Brooks/Cole, 2001).
8.
8. D. G. Swanson, Quantum Mechanics: Foundations and Applications (Taylor & Francis, 2007).
9.
9. J. Robertson, Eur. Phys. J. Appl. Phys. 28, 291 (2004).
http://dx.doi.org/10.1051/epjap:2004206
10.
10. A. Asgari, M. Kalafi, and L. Faraone, J. Appl. Phys. 95, 1185 (2004).
http://dx.doi.org/10.1063/1.1635654
11.
11. M. Gonschorek, J.-F. Carlin, E. Feltin, M. A. Py, N. Grandjean, V. Darakchieva, B. Monemar, M. Lorenz, and G. Ramm, J. Appl. Phys. 103, 093714 (2008).
http://dx.doi.org/10.1063/1.2917290
12.
12. H. C. Card and E. H. Rhoderick, J. Phys. D 4, 1602 (1971).
http://dx.doi.org/10.1088/0022-3727/4/10/320
13.
13. D. A. Neamen, Semiconductor Physics and Devices, 3rd edition (McGraw-Hill, 2002).
14.
14. K. Yang, Y.-C. King, and C. Hu, VLSI Symp. Tech. Dig., 77 (1999).
15.
15. J. R. Hauser and K. Ahmed, AIP Conf. Proc. 449, 235 (1998).
http://dx.doi.org/10.1063/1.56801
16.
16. J. A. López-Villanueva, I. Melchor, F. Gámiz, J. Banqueri, and J. A. Jiménez-Tejada, Solid-State Electron. 38, 203 (1995).
http://dx.doi.org/10.1016/0038-1101(94)E0033-B
17.
17. M. G. Betti, V. Corradini, G. Bertoni, P. Casarini, C. Mariani, and A. Abramo, Phys. Rev. B 63, 155315, (2001).
http://dx.doi.org/10.1103/PhysRevB.63.155315
18.
18. S. A. Hareland, S. Kzlshnamurthy, S. Jallepalli, C.-F. Yeap, K. Hasnat, A. F. Tasch, Jr., and C. M. Maziar, IEEE Trans. Electron Devices 43, 90 (1996).
http://dx.doi.org/10.1109/16.477597
19.
19. S. A. Hareland, S. Jallepalli, W.-K. Shih, H. Wang, G. L. Chindalore, A. F. Tasch, and C. M. Maziar, IEEE Trans. Electron Devices 45, 179 (1998).
http://dx.doi.org/10.1109/16.658828
20.
20. M. I. Vexler, Solid-State Electron. 47, 1283 (2003).
http://dx.doi.org/10.1016/S0038-1101(03)00062-5
21.
21. G. Paasch and H. Übensee, Phys. Stat. Sol. (b) 118, 165 (1982).
http://dx.doi.org/10.1002/pssb.2221130116
22.
22. C. Jungemann, C. D. Nguyen, B. Neinhüs, S. Decker, and B. Meinerzhagen, Tech. Proc. of the 2001 Intern. Conf. on Modeling and Simulation of Microsystems, (2001) (link: http://www.nsti.org/procs/MSM2001/10/W21.3).
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/10/10.1063/1.4826886
Loading
/content/aip/journal/adva/3/10/10.1063/1.4826886
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/3/10/10.1063/1.4826886
2013-10-24
2014-07-29

Abstract

We derive a statistical physics model of two-dimensional electron gas (2DEG) and propose an accurate approximation method for calculating the quantum-mechanical effects of metal-oxide-semiconductor (MOS) structure in accumulation and strong inversion regions. We use an exponential surface potential approximation in solving the quantization energy levels and derive the function of density of states in 2D to 3D transition region by applying uncertainty principle and Schrödinger equation in k-space. The simulation results show that our approximation method and theory of density of states solve the two major problems of previous researches: the non-negligible error caused by the linear potential approximation and the inconsistency of density of states and carrier distribution in 2D to 3D transition region.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/10/1.4826886.html;jsessionid=51qlas9m9j047.x-aip-live-02?itemId=/content/aip/journal/adva/3/10/10.1063/1.4826886&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Quantum-mechanical calculation of carrier distribution in MOS accumulation and strong inversion layers
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/10/10.1063/1.4826886
10.1063/1.4826886
SEARCH_EXPAND_ITEM