1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Impact of compound doping on hole and electron balance in p-i-n organic light-emitting diodes
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/3/10/10.1063/1.4826982
1.
1. C. W. Tang and S. A. VanSlyke, Appl. Phys. Lett. 51, 913 (1987).
http://dx.doi.org/10.1063/1.98799
2.
2. M. C. Gather, A. Köhnen, and K. Meerholz, Adv. Mater. 23, 233 (2011).
http://dx.doi.org/10.1002/adma.201002636
3.
3. H. Uoyama, K. Goushi, K. Shizu, H. Nomura, and C. Adachi, Nature 492, 234 (2012).
http://dx.doi.org/10.1038/nature11687
4.
4. J. S. Huang, M. Pfeiffer, A. Werner, J. Blochwitz, S. Liu, and K. Leo, Appl. Phys. Lett. 80, 139 (2002).
http://dx.doi.org/10.1063/1.1432110
5.
5. M. Pfeiffer, S. R. Forrest, K. Leo, and M. E. Thompson, Adv. Mater. 14, 1633 (2002).
http://dx.doi.org/10.1002/1521-4095(20021118)14:22<1633::AID-ADMA1633>3.0.CO;2-#
6.
6. G. F. He, M. Pfeiffer, M. Hofmann, J. Birnstock, R. Pudzich, J. Salbeck, and K. Leo, Appl. Phys. Lett. 85, 3911 (2004).
http://dx.doi.org/10.1063/1.1812378
7.
7. C. C. Chang, M. T. Hsieh, J. F. Chen, S. W. Hwang, and C. H. Chen, Appl. Phys. Lett. 89, 253504 (2006).
http://dx.doi.org/10.1063/1.2405856
8.
8. D. S. Leem, J. H. Lee, J. W. Kang, and J. J. Kim, Appl. Phys. Lett. 93, 103304 (2008).
http://dx.doi.org/10.1063/1.2979706
9.
9. S. Y. Kim, W. S. Jeon, T. J. Park, R. Pode, J. Jang, and J. H. Kwon, Appl. Phys. Lett. 94, 133303 (2009).
http://dx.doi.org/10.1063/1.3114378
10.
10. K. S. Yook, S. O. Jeon, S. Y. Min, H. J. Yang, T. Noh, S. K. Kang, J. Y. Lee, and T. W. Lee, Adv. Funct. Mater. 20, 1797 (2010).
http://dx.doi.org/10.1002/adfm.201000137
11.
11. M. Thomschke, S. Hofmann, S. Olthof, M. Anderson, H. Kleemann, M. Schober, B. Lüssem, and K. Leo, Appl. Phys. Lett. 98, 083304 (2011).
http://dx.doi.org/10.1063/1.3559847
12.
12. C. Cai, S. J. Su, T. Chiba, H. Sasabe, Y. J. Pu, K. Nakayama, and J. Kido, Org. Electron. 12, 843 (2011).
http://dx.doi.org/10.1016/j.orgel.2011.01.021
13.
13. B. Lüssem, M. Riede, and K. Leo, Phys. Stat. Sol. A 210, 9 (2013).
http://dx.doi.org/10.1002/pssa.201228310
14.
14. B. A. Gregg, S. G. Chen, and R. A. Cormier, Chem. Mater. 16, 4586 (2004).
http://dx.doi.org/10.1021/cm049625c
15.
15. J. S. Kim, P. K. H. Ho, N. C. Greenham, and R. H. Friend, J. Appl. Phys. 88, 1073 (2000).
http://dx.doi.org/10.1063/1.373779
16.
16. S. R. Forrest, D. D. C. Bradley, and M. E. Thompson, Adv. Mater. 15, 1043 (2003).
http://dx.doi.org/10.1002/adma.200302151
17.
17. M. Kröger, S. Hamwi, J. Meyer, T. Riedl, W. Kowalsky, and A. Kahn, Org. Electron. 10, 932 (2009).
http://dx.doi.org/10.1016/j.orgel.2009.05.007
18.
18. J. Meyer, M. Kröger, S. Hamwi, F. Gnam, T. Riedl, W. Kowalsky, and A. Kahn, Appl. Phys. Lett. 96, 193302 (2010).
http://dx.doi.org/10.1063/1.3427430
19.
19. K. R. Choudhury, J. H. Yoon, and F. So, Adv. Mater. 20, 1456 (2008).
http://dx.doi.org/10.1002/adma.200701657
20.
20. J. Xiao, X. X. Wang, H. Zhu, X. Gao, Z. H. Yang, X. H. Zhang, and S. D. Wang, Appl. Phys. Lett. 101, 013301 (2012).
http://dx.doi.org/10.1063/1.4732505
21.
21. C. Ganzorig and M. Fujihira, Appl. Phys. Lett. 77, 4211 (2000).
http://dx.doi.org/10.1063/1.1331640
22.
22. Y. Lv, P. Zhou, N. Wei, K. Peng, J. Yu, B. Wei, Z. Wang, and C. Li, Org. Electron. 14, 124 (2013).
http://dx.doi.org/10.1016/j.orgel.2012.09.042
23.
23. H. Z. Siboni, Y. C. Luo, and H. Aziz, J. Appl. Phys. 109, 044501 (2011).
http://dx.doi.org/10.1063/1.3549128
24.
24. J. Xiao, H. Zhu, X. X. Wang, X. Gao, Z. H. Yang, X. H. Zhang, and S. D. Wang, J. Appl. Phys. 112, 014513 (2012).
http://dx.doi.org/10.1063/1.4736589
25.
25. Z. Y. Xie, L. S. Hung, and S. T. Lee, Appl. Phys. Lett. 79, 1048 (2001).
http://dx.doi.org/10.1063/1.1390479
26.
26. B. Ruhstaller, S. A. Carter, S. Barth, H. Riel, W. Riess, and J. C. Scott, J. Appl. Phys. 89, 4575 (2001).
http://dx.doi.org/10.1063/1.1352027
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/10/10.1063/1.4826982
Loading
/content/aip/journal/adva/3/10/10.1063/1.4826982
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/3/10/10.1063/1.4826982
2013-10-22
2014-12-22

Abstract

The fluorescent and phosphorescent p-i-n organic light-emitting diodes (OLEDs) with well controllable compound doping have been systematically investigated, where MoO and LiF are the effective p-type and n-type dopants, respectively. For both the bulk and interfacial doping, the hole and electron balance in the devices is found to be strongly dependent on the doping configuration, which could either facilitate or compromise the device power efficiency. The impact of the compound doping on the charge balance is further confirmed by the change of the emission region with different doping configuration. The modulation of p-type and n-type doping densities and position is thus essential for optimizing hole and electron balance in p-i-n OLEDs.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/10/1.4826982.html;jsessionid=bhbupm7heq11k.x-aip-live-03?itemId=/content/aip/journal/adva/3/10/10.1063/1.4826982&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Impact of compound doping on hole and electron balance in p-i-n organic light-emitting diodes
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/10/10.1063/1.4826982
10.1063/1.4826982
SEARCH_EXPAND_ITEM