Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. C. W. Tang and S. A. VanSlyke, Appl. Phys. Lett. 51, 913 (1987).
2. M. C. Gather, A. Köhnen, and K. Meerholz, Adv. Mater. 23, 233 (2011).
3. H. Uoyama, K. Goushi, K. Shizu, H. Nomura, and C. Adachi, Nature 492, 234 (2012).
4. J. S. Huang, M. Pfeiffer, A. Werner, J. Blochwitz, S. Liu, and K. Leo, Appl. Phys. Lett. 80, 139 (2002).
5. M. Pfeiffer, S. R. Forrest, K. Leo, and M. E. Thompson, Adv. Mater. 14, 1633 (2002).<1633::AID-ADMA1633>3.0.CO;2-#
6. G. F. He, M. Pfeiffer, M. Hofmann, J. Birnstock, R. Pudzich, J. Salbeck, and K. Leo, Appl. Phys. Lett. 85, 3911 (2004).
7. C. C. Chang, M. T. Hsieh, J. F. Chen, S. W. Hwang, and C. H. Chen, Appl. Phys. Lett. 89, 253504 (2006).
8. D. S. Leem, J. H. Lee, J. W. Kang, and J. J. Kim, Appl. Phys. Lett. 93, 103304 (2008).
9. S. Y. Kim, W. S. Jeon, T. J. Park, R. Pode, J. Jang, and J. H. Kwon, Appl. Phys. Lett. 94, 133303 (2009).
10. K. S. Yook, S. O. Jeon, S. Y. Min, H. J. Yang, T. Noh, S. K. Kang, J. Y. Lee, and T. W. Lee, Adv. Funct. Mater. 20, 1797 (2010).
11. M. Thomschke, S. Hofmann, S. Olthof, M. Anderson, H. Kleemann, M. Schober, B. Lüssem, and K. Leo, Appl. Phys. Lett. 98, 083304 (2011).
12. C. Cai, S. J. Su, T. Chiba, H. Sasabe, Y. J. Pu, K. Nakayama, and J. Kido, Org. Electron. 12, 843 (2011).
13. B. Lüssem, M. Riede, and K. Leo, Phys. Stat. Sol. A 210, 9 (2013).
14. B. A. Gregg, S. G. Chen, and R. A. Cormier, Chem. Mater. 16, 4586 (2004).
15. J. S. Kim, P. K. H. Ho, N. C. Greenham, and R. H. Friend, J. Appl. Phys. 88, 1073 (2000).
16. S. R. Forrest, D. D. C. Bradley, and M. E. Thompson, Adv. Mater. 15, 1043 (2003).
17. M. Kröger, S. Hamwi, J. Meyer, T. Riedl, W. Kowalsky, and A. Kahn, Org. Electron. 10, 932 (2009).
18. J. Meyer, M. Kröger, S. Hamwi, F. Gnam, T. Riedl, W. Kowalsky, and A. Kahn, Appl. Phys. Lett. 96, 193302 (2010).
19. K. R. Choudhury, J. H. Yoon, and F. So, Adv. Mater. 20, 1456 (2008).
20. J. Xiao, X. X. Wang, H. Zhu, X. Gao, Z. H. Yang, X. H. Zhang, and S. D. Wang, Appl. Phys. Lett. 101, 013301 (2012).
21. C. Ganzorig and M. Fujihira, Appl. Phys. Lett. 77, 4211 (2000).
22. Y. Lv, P. Zhou, N. Wei, K. Peng, J. Yu, B. Wei, Z. Wang, and C. Li, Org. Electron. 14, 124 (2013).
23. H. Z. Siboni, Y. C. Luo, and H. Aziz, J. Appl. Phys. 109, 044501 (2011).
24. J. Xiao, H. Zhu, X. X. Wang, X. Gao, Z. H. Yang, X. H. Zhang, and S. D. Wang, J. Appl. Phys. 112, 014513 (2012).
25. Z. Y. Xie, L. S. Hung, and S. T. Lee, Appl. Phys. Lett. 79, 1048 (2001).
26. B. Ruhstaller, S. A. Carter, S. Barth, H. Riel, W. Riess, and J. C. Scott, J. Appl. Phys. 89, 4575 (2001).

Data & Media loading...


Article metrics loading...



The fluorescent and phosphorescent p-i-n organic light-emitting diodes (OLEDs) with well controllable compound doping have been systematically investigated, where MoO and LiF are the effective p-type and n-type dopants, respectively. For both the bulk and interfacial doping, the hole and electron balance in the devices is found to be strongly dependent on the doping configuration, which could either facilitate or compromise the device power efficiency. The impact of the compound doping on the charge balance is further confirmed by the change of the emission region with different doping configuration. The modulation of p-type and n-type doping densities and position is thus essential for optimizing hole and electron balance in p-i-n OLEDs.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd