Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/3/10/10.1063/1.4827023
1.
1. E. E. Purvis, The Chernobyl 4 accident sequence: update-April 1995 (ISTC, Kiev, 1995).
2.
2. V. Lorenz, Chem. Geol. 62, 149156 (1987).
http://dx.doi.org/10.1016/0009-2541(87)90066-0
3.
3. K. H. Wohletz, J. Volcanol. Geotherm. Res. 17, 3164 (1983).
http://dx.doi.org/10.1016/0377-0273(83)90061-6
4.
4. B. Zimanowski, K. H. Wohletz, P. Dellino, and R. Büttner, J. Volcanol. Geotherm. Res. 2557, 15 (2002).
5.
5. A. Hall, Nuclear Engineering and Design 109, 407415 (1988).
http://dx.doi.org/10.1016/0029-5493(88)90286-5
6.
6. A. Freud, R. Harari, and E. Sher, Nuclear Engineering and Design 239(4), 722727 (2009).
http://dx.doi.org/10.1016/j.nucengdes.2008.11.021
7.
7. G. Fröhlich and A. Schatz, Dampfexplosion: Das unerklärte Phänomen – Unfallanalysen/Vulkanismus/Metallurgie, Jahrbuch Univ. Stuttgart 1994, 73–84, Stuttgart, 1995.
8.
8. R. Büttner and B. Zimanowski, Phys. Rev. E 57, 57265729 (1998).
http://dx.doi.org/10.1103/PhysRevE.57.5726
9.
9. G. Fröhlich, B. Zimanowski, V. Lorenz, B. Bayer, E. v. Berg, M. Khan, and M. Schindler, Experimente zur Simulation phreatomagmatischer Explosionen und vergleichende Untersuchungen, Abschlussbericht, 1992.
10.
10. G. Fröhlich, B. Zimanowski, V. Lorenz, Explosive thermal interactions with molten lava and water 1993: Proc 3rd World Conf on Fluid Mechanics and Thermodynamics, Honolulu, Hawaii (Elsevier, Amsterdam, 1993), 14591468.
11.
11. Double issue of Nuclear Engineering and Design on fuel-coolant interactions and steam explosions, Nucl. Eng. Des. 155, 12 (1995).
http://dx.doi.org/10.1016/0029-5493(94)00864-U
12.
12. G. Fröhlich, Chem.-Ing.-Tech. 50(11), 861866 (1978).
http://dx.doi.org/10.1002/cite.330501107
13.
13. T. Li, Y. Yang, M. Yuan, and Z. Hu, Nuclear Science and Techniques 18(5), 311315 (2007).
http://dx.doi.org/10.1016/S1001-8042(07)60068-2
14.
14. A. Austin-Erickson, R. Büttner, P. Dellino, M. H. Ort, and B. Zimanowski, J. Geophys. Res. 113, B11201, doi:10.1029/2008JB005731 (2008).
http://dx.doi.org/10.1029/2008JB005731
15.
15. R. Büttner, B. Zimanowski, C. O. Mohrholz, and R. Kümmel, Journal of Applied Physics 98, 04352410435248 (2005).
http://dx.doi.org/10.1063/1.2033149
16.
16. B. Zimanowski, R. Büttner, and V. Lorenz, Bull Volcanol 58, 491495 (1997).
http://dx.doi.org/10.1007/s004450050157
17.
17. L. A. Bromley, Chem. Eng. Prog. 46, 221227 (1950).
18.
18. R. B. Duffy, Int. J. Heat Mass Transfer 16, 15131525 (1973).
http://dx.doi.org/10.1016/0017-9310(73)90180-4
19.
19. D. F. Fletcher, Nucl. Eng. Des. 155, 2736 (1995).
http://dx.doi.org/10.1016/0029-5493(94)00865-V
20.
20. B. Zimanowski, R. Büttner, and J. Nestler, Europhys. Lett. 38(4), 285289 (1997).
http://dx.doi.org/10.1209/epl/i1997-00239-3
21.
21. A. Fagents, T. K. P. Gregg, and R. M. C. Lopes, Modelling Volcanic processes, The Physics and Mathematics of Volcanism, Chapter 11, (Cambridge University Press, 2013).
22.
22. B. Zimanowski, G. Fröhlich, and V. Lorenz, J. Volcanol. Geotherm. Res. 48, 341358 (1991).
http://dx.doi.org/10.1016/0377-0273(91)90050-A
23.
23. B. Zimanowski, V. Lorenz, and G. Fröhlich, J. Volcanol. Geotherm. Res. 30, 149153 (1986).
http://dx.doi.org/10.1016/0377-0273(86)90071-5
24.
24. R. Büttner, B. Zimanowski, J. Blumm, and L. Hagemann, J. Volcanol. Geotherm. Res. 80, 293302 (1998).
http://dx.doi.org/10.1016/S0377-0273(97)00050-4
25.
25. L. Calderín, D. J. Gonzaled, L. E. Gonzalez, and J. M. López, J. Chem. Phys. 129, 194506 (2008).
http://dx.doi.org/10.1063/1.3020304
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/10/10.1063/1.4827023
Loading
/content/aip/journal/adva/3/10/10.1063/1.4827023
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/3/10/10.1063/1.4827023
2013-10-23
2016-09-24

Abstract

A modified setup featuring high speed high resolution data and video recording was developed to obtain detailed information on trigger and heat transfer times during explosive molten fuel-coolant-interaction (MFCI). MFCI occurs predominantly in configurations where water is entrapped by hot melt. The setup was modified to allow direct observation of the trigger and explosion onset. In addition the influences of experimental control and data acquisition can now be more clearly distinguished from the pure phenomena. More precise experimental studies will facilitate the description of MFCI thermodynamics.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/10/1.4827023.html;jsessionid=rpgsgoO19VwUZistP-j8AOyH.x-aip-live-03?itemId=/content/aip/journal/adva/3/10/10.1063/1.4827023&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/3/10/10.1063/1.4827023&pageURL=http://scitation.aip.org/content/aip/journal/adva/3/10/10.1063/1.4827023'
Right1,Right2,Right3,