Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. H. Klauk, Organic Electronics (Wiley-VCH, Weinheim, 2006).
2. J. E. Anthony, Angew. Chem. Int. Ed. 47, 452 (2008).
3. M. L. Tang and Z. Bao, Chem. Mater. 23, 446 (2011).
4. L. Biniek, B. C. Schroeder, C. B. Nielsen, and I. McCulloh, J. Mater. Chem. 22, 14803 (2012).
5. G. Giri, E. Verploegen, S. C. B. Mannsfeld, S. Atahan-Evrenk, D. H. Kim, S. Y. Lee, H. A. Becerril, A. Aspuru-Guzik, M. F. Toney, and Z. Bao, Nature 480, 504 (2011).
6. T. Izawa, E. Miyazaki, and K. Takimiya, Adv. Mater. 20, 3388 (2008).
7. M. J. Kang, I. Doi, H. Mori, E. Miyazaki, K. Takimiya, M. Ikeda, and H. Kuwabara, Adv. Mater. 23, 1222 (2011).
8. B. A. Jones, M. J. Ahrens, M.-H. Yoon, A. Facchetti, T. J. Marks, and M. R. Wasielewski, Angew. Chem., Int. Ed. Engl. 43, 6363 (2004).
9. E. Menard, V. Podzorov, S.-H. Hur, A. Gaur, M. E. Gershenson, J. A. Rogers, Adv. Mater. 16, 2097 (2004).
10. J. Takeya, M. Yamagishi, Y. Tominari, R. Hirahara, Y. Nakazawa, T. Nishikawa, T. Kawase, T. Shimoda, and S. Ogawa, Appl. Phys. Lett. 90, 102120 (2007).
11. C. Reese, W.-J. Chung, M.-M. Ling, M. Roberts, and Z. Bao, Appl. Phys. Lett. 89, 202108 (2006).
12. N. A. Minder, S. Ono, Z. Chen, A. Facchetti, and A. F. Morpurgo, Adv. Mater. 24, 503 (2012).
13. G. Horowitz, R. Hajlaoui, and P. Delannoy, J. Phys. III 5, 355 (1995).
14. G. Horowitz, M. E. Hajlaoui, and R. Hajlaoui, J. Appl. Phys. 87, 4456 (2000).
15. N. Kawasaki, T. Nagano, Y. Kubozono, Y. Sako, Y. Morimoto, Y. Takaguchi, A. Fujiwara, Chih-Chien Chu, and T. Imae, Appl. Phys. Lett. 91, 243515 (2007).
16. J. Puigdollers, A. Marsal, S. Cheylan, C. Voz, and R. Alcubilla, Org. Electr. 11, 1333 (2010).
17. W. L. Kalb, F. Meier, K. Mattenberger, and B. Batlogg, Phys. Rev. B 76, 184112 (2007).
18. W. L. Kalb, K. Mattenberger, and B. Batlogg, Phys. Rev. B 78, 035334 (2008).
19. W. L. Kalb and B. Batlogg, Phys. Rev. B 81, 035327 (2010).
20. W. L. Kalb, S. Haas, C. Kreller, T. Mathis, and B. Batlogg, Phys. Rev. B 81, 155315 (2007).
21. K. Willa, R. Häusermann, T. Mathis, A. Facchetti, Z. Chen, and B. Batlogg, J. Appl. Phys. 113, 133707 (2013).
22. R. J. Chesterfield, J. C. Mckeen, C. R. Newmann, C. D. Frisbie, P. C. Ewbank, K. R. Mann, and L. L. Miller, J. Appl. Phys. 95, 6396 (2004).
23. N. Kawasaki, Y. Ohta, Y. Kubozono, A. Konishi, and A. Fujiwara, Appl. Phys. Lett. 92, 163307 (2008).
24. E. J. Meijer, M. Matters, P. T. Herwig, D. M. de Leeuw, and T. M. Klapwijk, Appl. Phys. Lett. 76, 3433 (2000).
25. R. J. Chesterfield, J. C. Mckeen, C. R. Newmann, P. C. Ewbank, D. A. da Silva Filho, J.-L. Bredas, L. L. Miller, K. R. Mann, and C. D. Frisbie, J. Phys. Chem. B 108, 19281 (2004).
26. J. A. Letzia, J. Rivnay, A. Facchetti, M. A. Ratner, and T. J. Marks, Adv. Func. Mater. 20, 50 (2010).
27. M. Ullah, A. Pivrikas, I. I. Fishchuk, A. Kadashchuk, P. Stadler, C. Simbrunner, N. S. Sariciftci, and H. Sitter, Appl. Phys. Lett. 98, 223301 (2011).
28. S. Kishida, Y. Naruke, Y. Ushida, and M. Matsumura, Jpn. J. Appl. Phys. 22, 511 (1983).
29. M. Shur and M. Hack, J. Appl. Phys. 55, 3831 (1984).
30. M. Shur and C. Hyun, J. Appl. Phys. 59, 2488 (1986).
31. G. Fortunato and P. Migliorato, J. Appl. Phys. 68, 2463 (1990).
32. V. Y. Butko, X. Chi, D. V. Lang, and A. P. Ramirez, Appl. Phys. Lett. 83, 4773 (2003).
33. D. V. Lang, X. Chi, T. Siegrist, A. M. Segrent, and A. P. Ramirez, Phys. Rev. Lett. 93, 86802 (2004).
34. C. Kreller, S. Haas, C. Goldmann, K. P. Pernstich, D. J. Gundlach, and B. Batlogg, Phys. Rev. B 75, 245115 (2007).
35. O. Tal, Y. Rosenwaks, Y. Preezant, N. Tessler, C. K. Chan, and A. Kahn, Phys. Rev. Lett. 95, 256405 (2005).
36. S. Yogev, R. Matsubara, M. Nakamura, U. Zschieschang, H. Klauk, and Y. Rosenwaks, Phys. Rev. Lett. 110, 036803 (2013).
37. A. S. Mishchenko, H. Matsui, and T. Hasegawa, Phys. Rev. B 85, 085211 (2012).
38. H. Matsui, A. S. Mishchenko, and T. Hasegawa, Phys. Rev. Lett. 104, 056602 (2010).
39. S. Deepak, S. F. Nelson, D. C. Freeman, M. Rajeswaran, W. G. Ahearn, D. M. Meyer, and J. T. Carey, Chem. Mater. 20, 7486 (2008).
40. H. Wada, K. Shibata, Y. Bando, and T. Mori, J. Mater. Chem. 148, 4165 (2008).
41. H. Wada and T. Mori, Appl. Phys. Lett. 93, 213303 (2008).
42. T. Takahashi, S. Tamura, Y. Akiyama, T. Kadoya, T. Kawamoto, and T. Mori, Appl. Phys. Express. 5, 061601 (2012).
43. A. Rademacher, S. Maerkle, and H. Langhals, Chem. Ber. 115, 2927 (1982).
44. A. Aumüller and S. Hünig, Liebigs Ann. Chem. 142 (1986).
45. H. S. Lee, D. H. Cho, M. Hwang, T. Jang, and K. Cho, J. Am. Chem. Soc. 130, 10556 (2008).
46. Y. Ito, A. A. Virkar, S. Mannsfeld, J. H. Oh, M. Toney, J. Locklin, and Z. Bao, J. Am. Chem. Soc. 131, 9396 (2009).
47. R. Schumacher, P. Thomas, K. Weber, and W. Fuchs, Solid State Commun. 62, 15 (1987).
48. P. Irsigler, D. Wagner, and D. J. Dunstan, J. Phys. C 16, 6605 (1983).
49. A. Yelon and B. Movaghar, Phys. Rev. Lett. 65, 618 (1990).
50. A. Yelon, B. Movaghar, and H. M. Branz, Phys. Rev. B 46, 12244 (1992).
51. J. P. Colinge and C. A. Colinge, Physics of Semiconductor Devices (Springer, New York, 2002) p. 99.
52. J. P. Colinge and C. A. Colinge, Physics of Semiconductor Devices (Springer, New York, 2002) p. 177.
53. A. Aumüller, P. Erk, S. Hünig, E. Hädicke, K. Peters, and H. G. von Schnering, Chem. Ber. 1991, 124, (2001).
54. P. Stallinga and H. L. Gomes, Org. Electron. 7, 592 (2006).
55. J. P. Colinge and C. A. Colinge, Physics of Semiconductor Devices (Springer, New York, 2002) p. 187.
56. J. P. Colinge and C. A. Colinge, Physics of Semiconductor Devices (Springer, New York, 2002) p. 206.
57. A. Rolland, J. Richard, J. P. Kleider, and D. Mencaraglia, J. Electrochem. Soc. 140, 3679 (1993).
58. K. N. N. Unni, S. Dabos-Seihnon, and J.-M. Nunzi, J. Phys. D 38, 1148 (2005).
59. T. Sakanoue and H. Sirringhaus, Nature Mater. 9, 736 (2010).
60. V. Podzorov, E. Menard, A. Borissov, V. Kiryukhin, J. A. Rogers, and M. E. Gershenson, Phys. Rev. Lett. 93, 086602 (2004).
61. I. N. Hulea, S. Fratini, H. Xie, C. L. Mulder, N. N. Iossad, G. Rastelli, S. Ciuchi, A. F. Morpurgo, Nature Mater. 5, 982 (2006).
62. H. Xie, H. Alves, A. F. Morpurgo, Phys. Rev. 80, 245305 (2009).
63. C. Liu, T. Minari, X. Lu, A. Kumatani, K. Takimiya, and K. Tsukagoshi, Adv. Mater. 23, 523 (2011).

Data & Media loading...


Article metrics loading...



We have investigated trap density of states (trap DOS) in n-channel organic field-effect transistors based on , ’-bis(cyclohexyl)naphthalene diimide (Cy-NDI) and dimethyldicyanoquinonediimine (DMDCNQI). A new method is proposed to extract trap DOS from the Arrhenius plot of the temperature-dependent transconductance. Double exponential trap DOS are observed, in which Cy-NDI has considerable deep states, by contrast, DMDCNQI has substantial tail states. In addition, numerical simulation of the transistor characteristics has been conducted by assuming an exponential trap distribution and the interface approximation. Temperature dependence of transfer characteristics are well reproduced only using several parameters, and the trap DOS obtained from the simulated characteristics are in good agreement with the assumed trap DOS, indicating that our analysis is self-consistent. Although the experimentally obtained Meyer-Neldel temperature is related to the trap distribution width, the simulation satisfies the Meyer-Neldel rule only very phenomenologically. The simulation also reveals that the subthreshold swing is not always a good indicator of the total trap amount, because it also largely depends on the trap distribution width. Finally, band transport is explored from the simulation having a small number of traps. A crossing point of the transfer curves and negative activation energy above a certain gate voltage are observed in the simulated characteristics, where the critical above which band transport is realized is determined by the sum of the trapped and free charge states below the conduction band edge.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd