Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/3/10/10.1063/1.4828415
1.
1. H. Klauk, Organic Electronics (Wiley-VCH, Weinheim, 2006).
2.
2. J. E. Anthony, Angew. Chem. Int. Ed. 47, 452 (2008).
http://dx.doi.org/10.1002/anie.200604045
3.
3. M. L. Tang and Z. Bao, Chem. Mater. 23, 446 (2011).
http://dx.doi.org/10.1021/cm102182x
4.
4. L. Biniek, B. C. Schroeder, C. B. Nielsen, and I. McCulloh, J. Mater. Chem. 22, 14803 (2012).
http://dx.doi.org/10.1039/c2jm31943h
5.
5. G. Giri, E. Verploegen, S. C. B. Mannsfeld, S. Atahan-Evrenk, D. H. Kim, S. Y. Lee, H. A. Becerril, A. Aspuru-Guzik, M. F. Toney, and Z. Bao, Nature 480, 504 (2011).
http://dx.doi.org/10.1038/nature10683
6.
6. T. Izawa, E. Miyazaki, and K. Takimiya, Adv. Mater. 20, 3388 (2008).
http://dx.doi.org/10.1002/adma.200800799
7.
7. M. J. Kang, I. Doi, H. Mori, E. Miyazaki, K. Takimiya, M. Ikeda, and H. Kuwabara, Adv. Mater. 23, 1222 (2011).
http://dx.doi.org/10.1002/adma.201001283
8.
8. B. A. Jones, M. J. Ahrens, M.-H. Yoon, A. Facchetti, T. J. Marks, and M. R. Wasielewski, Angew. Chem., Int. Ed. Engl. 43, 6363 (2004).
http://dx.doi.org/10.1002/anie.200461324
9.
9. E. Menard, V. Podzorov, S.-H. Hur, A. Gaur, M. E. Gershenson, J. A. Rogers, Adv. Mater. 16, 2097 (2004).
http://dx.doi.org/10.1002/adma.200401017
10.
10. J. Takeya, M. Yamagishi, Y. Tominari, R. Hirahara, Y. Nakazawa, T. Nishikawa, T. Kawase, T. Shimoda, and S. Ogawa, Appl. Phys. Lett. 90, 102120 (2007).
http://dx.doi.org/10.1063/1.2711393
11.
11. C. Reese, W.-J. Chung, M.-M. Ling, M. Roberts, and Z. Bao, Appl. Phys. Lett. 89, 202108 (2006).
http://dx.doi.org/10.1063/1.2388151
12.
12. N. A. Minder, S. Ono, Z. Chen, A. Facchetti, and A. F. Morpurgo, Adv. Mater. 24, 503 (2012).
http://dx.doi.org/10.1002/adma.201103960
13.
13. G. Horowitz, R. Hajlaoui, and P. Delannoy, J. Phys. III 5, 355 (1995).
14.
14. G. Horowitz, M. E. Hajlaoui, and R. Hajlaoui, J. Appl. Phys. 87, 4456 (2000).
http://dx.doi.org/10.1063/1.373091
15.
15. N. Kawasaki, T. Nagano, Y. Kubozono, Y. Sako, Y. Morimoto, Y. Takaguchi, A. Fujiwara, Chih-Chien Chu, and T. Imae, Appl. Phys. Lett. 91, 243515 (2007).
http://dx.doi.org/10.1063/1.2824818
16.
16. J. Puigdollers, A. Marsal, S. Cheylan, C. Voz, and R. Alcubilla, Org. Electr. 11, 1333 (2010).
http://dx.doi.org/10.1016/j.orgel.2010.05.007
17.
17. W. L. Kalb, F. Meier, K. Mattenberger, and B. Batlogg, Phys. Rev. B 76, 184112 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.184112
18.
18. W. L. Kalb, K. Mattenberger, and B. Batlogg, Phys. Rev. B 78, 035334 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.035334
19.
19. W. L. Kalb and B. Batlogg, Phys. Rev. B 81, 035327 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.035327
20.
20. W. L. Kalb, S. Haas, C. Kreller, T. Mathis, and B. Batlogg, Phys. Rev. B 81, 155315 (2007).
http://dx.doi.org/10.1103/PhysRevB.81.155315
21.
21. K. Willa, R. Häusermann, T. Mathis, A. Facchetti, Z. Chen, and B. Batlogg, J. Appl. Phys. 113, 133707 (2013).
http://dx.doi.org/10.1063/1.4798610
22.
22. R. J. Chesterfield, J. C. Mckeen, C. R. Newmann, C. D. Frisbie, P. C. Ewbank, K. R. Mann, and L. L. Miller, J. Appl. Phys. 95, 6396 (2004).
http://dx.doi.org/10.1063/1.1710729
23.
23. N. Kawasaki, Y. Ohta, Y. Kubozono, A. Konishi, and A. Fujiwara, Appl. Phys. Lett. 92, 163307 (2008).
http://dx.doi.org/10.1063/1.2908886
24.
24. E. J. Meijer, M. Matters, P. T. Herwig, D. M. de Leeuw, and T. M. Klapwijk, Appl. Phys. Lett. 76, 3433 (2000).
http://dx.doi.org/10.1063/1.126669
25.
25. R. J. Chesterfield, J. C. Mckeen, C. R. Newmann, P. C. Ewbank, D. A. da Silva Filho, J.-L. Bredas, L. L. Miller, K. R. Mann, and C. D. Frisbie, J. Phys. Chem. B 108, 19281 (2004).
http://dx.doi.org/10.1021/jp046246y
26.
26. J. A. Letzia, J. Rivnay, A. Facchetti, M. A. Ratner, and T. J. Marks, Adv. Func. Mater. 20, 50 (2010).
http://dx.doi.org/10.1002/adfm.200900831
27.
27. M. Ullah, A. Pivrikas, I. I. Fishchuk, A. Kadashchuk, P. Stadler, C. Simbrunner, N. S. Sariciftci, and H. Sitter, Appl. Phys. Lett. 98, 223301 (2011).
http://dx.doi.org/10.1063/1.3584131
28.
28. S. Kishida, Y. Naruke, Y. Ushida, and M. Matsumura, Jpn. J. Appl. Phys. 22, 511 (1983).
http://dx.doi.org/10.1143/JJAP.22.511
29.
29. M. Shur and M. Hack, J. Appl. Phys. 55, 3831 (1984).
http://dx.doi.org/10.1063/1.332893
30.
30. M. Shur and C. Hyun, J. Appl. Phys. 59, 2488 (1986).
http://dx.doi.org/10.1063/1.336994
31.
31. G. Fortunato and P. Migliorato, J. Appl. Phys. 68, 2463 (1990).
http://dx.doi.org/10.1063/1.346507
32.
32. V. Y. Butko, X. Chi, D. V. Lang, and A. P. Ramirez, Appl. Phys. Lett. 83, 4773 (2003).
http://dx.doi.org/10.1063/1.1631736
33.
33. D. V. Lang, X. Chi, T. Siegrist, A. M. Segrent, and A. P. Ramirez, Phys. Rev. Lett. 93, 86802 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.086802
34.
34. C. Kreller, S. Haas, C. Goldmann, K. P. Pernstich, D. J. Gundlach, and B. Batlogg, Phys. Rev. B 75, 245115 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.245115
35.
35. O. Tal, Y. Rosenwaks, Y. Preezant, N. Tessler, C. K. Chan, and A. Kahn, Phys. Rev. Lett. 95, 256405 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.256405
36.
36. S. Yogev, R. Matsubara, M. Nakamura, U. Zschieschang, H. Klauk, and Y. Rosenwaks, Phys. Rev. Lett. 110, 036803 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.036803
37.
37. A. S. Mishchenko, H. Matsui, and T. Hasegawa, Phys. Rev. B 85, 085211 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.085211
38.
38. H. Matsui, A. S. Mishchenko, and T. Hasegawa, Phys. Rev. Lett. 104, 056602 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.056602
39.
39. S. Deepak, S. F. Nelson, D. C. Freeman, M. Rajeswaran, W. G. Ahearn, D. M. Meyer, and J. T. Carey, Chem. Mater. 20, 7486 (2008).
http://dx.doi.org/10.1021/cm802071w
40.
40. H. Wada, K. Shibata, Y. Bando, and T. Mori, J. Mater. Chem. 148, 4165 (2008).
http://dx.doi.org/10.1039/b808435a
41.
41. H. Wada and T. Mori, Appl. Phys. Lett. 93, 213303 (2008).
http://dx.doi.org/10.1063/1.3037226
42.
42. T. Takahashi, S. Tamura, Y. Akiyama, T. Kadoya, T. Kawamoto, and T. Mori, Appl. Phys. Express. 5, 061601 (2012).
http://dx.doi.org/10.1143/APEX.5.061601
43.
43. A. Rademacher, S. Maerkle, and H. Langhals, Chem. Ber. 115, 2927 (1982).
http://dx.doi.org/10.1002/cber.19821150823
44.
44. A. Aumüller and S. Hünig, Liebigs Ann. Chem. 142 (1986).
45.
45. H. S. Lee, D. H. Cho, M. Hwang, T. Jang, and K. Cho, J. Am. Chem. Soc. 130, 10556 (2008).
http://dx.doi.org/10.1021/ja800142t
46.
46. Y. Ito, A. A. Virkar, S. Mannsfeld, J. H. Oh, M. Toney, J. Locklin, and Z. Bao, J. Am. Chem. Soc. 131, 9396 (2009).
http://dx.doi.org/10.1021/ja9029957
47.
47. R. Schumacher, P. Thomas, K. Weber, and W. Fuchs, Solid State Commun. 62, 15 (1987).
http://dx.doi.org/10.1016/0038-1098(87)90074-3
48.
48. P. Irsigler, D. Wagner, and D. J. Dunstan, J. Phys. C 16, 6605 (1983).
http://dx.doi.org/10.1088/0022-3719/16/34/010
49.
49. A. Yelon and B. Movaghar, Phys. Rev. Lett. 65, 618 (1990).
http://dx.doi.org/10.1103/PhysRevLett.65.618
50.
50. A. Yelon, B. Movaghar, and H. M. Branz, Phys. Rev. B 46, 12244 (1992).
http://dx.doi.org/10.1103/PhysRevB.46.12244
51.
51. J. P. Colinge and C. A. Colinge, Physics of Semiconductor Devices (Springer, New York, 2002) p. 99.
52.
52. J. P. Colinge and C. A. Colinge, Physics of Semiconductor Devices (Springer, New York, 2002) p. 177.
53.
53. A. Aumüller, P. Erk, S. Hünig, E. Hädicke, K. Peters, and H. G. von Schnering, Chem. Ber. 1991, 124, (2001).
54.
54. P. Stallinga and H. L. Gomes, Org. Electron. 7, 592 (2006).
http://dx.doi.org/10.1016/j.orgel.2006.10.003
55.
55. J. P. Colinge and C. A. Colinge, Physics of Semiconductor Devices (Springer, New York, 2002) p. 187.
56.
56. J. P. Colinge and C. A. Colinge, Physics of Semiconductor Devices (Springer, New York, 2002) p. 206.
57.
57. A. Rolland, J. Richard, J. P. Kleider, and D. Mencaraglia, J. Electrochem. Soc. 140, 3679 (1993).
http://dx.doi.org/10.1149/1.2221149
58.
58. K. N. N. Unni, S. Dabos-Seihnon, and J.-M. Nunzi, J. Phys. D 38, 1148 (2005).
http://dx.doi.org/10.1088/0022-3727/38/8/008
59.
59. T. Sakanoue and H. Sirringhaus, Nature Mater. 9, 736 (2010).
http://dx.doi.org/10.1038/nmat2825
60.
60. V. Podzorov, E. Menard, A. Borissov, V. Kiryukhin, J. A. Rogers, and M. E. Gershenson, Phys. Rev. Lett. 93, 086602 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.086602
61.
61. I. N. Hulea, S. Fratini, H. Xie, C. L. Mulder, N. N. Iossad, G. Rastelli, S. Ciuchi, A. F. Morpurgo, Nature Mater. 5, 982 (2006).
http://dx.doi.org/10.1038/nmat1774
62.
62. H. Xie, H. Alves, A. F. Morpurgo, Phys. Rev. 80, 245305 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.245305
63.
63. C. Liu, T. Minari, X. Lu, A. Kumatani, K. Takimiya, and K. Tsukagoshi, Adv. Mater. 23, 523 (2011).
http://dx.doi.org/10.1002/adma.201002682
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/10/10.1063/1.4828415
Loading
/content/aip/journal/adva/3/10/10.1063/1.4828415
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/3/10/10.1063/1.4828415
2013-10-28
2016-12-10

Abstract

We have investigated trap density of states (trap DOS) in n-channel organic field-effect transistors based on , ’-bis(cyclohexyl)naphthalene diimide (Cy-NDI) and dimethyldicyanoquinonediimine (DMDCNQI). A new method is proposed to extract trap DOS from the Arrhenius plot of the temperature-dependent transconductance. Double exponential trap DOS are observed, in which Cy-NDI has considerable deep states, by contrast, DMDCNQI has substantial tail states. In addition, numerical simulation of the transistor characteristics has been conducted by assuming an exponential trap distribution and the interface approximation. Temperature dependence of transfer characteristics are well reproduced only using several parameters, and the trap DOS obtained from the simulated characteristics are in good agreement with the assumed trap DOS, indicating that our analysis is self-consistent. Although the experimentally obtained Meyer-Neldel temperature is related to the trap distribution width, the simulation satisfies the Meyer-Neldel rule only very phenomenologically. The simulation also reveals that the subthreshold swing is not always a good indicator of the total trap amount, because it also largely depends on the trap distribution width. Finally, band transport is explored from the simulation having a small number of traps. A crossing point of the transfer curves and negative activation energy above a certain gate voltage are observed in the simulated characteristics, where the critical above which band transport is realized is determined by the sum of the trapped and free charge states below the conduction band edge.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/10/1.4828415.html;jsessionid=orNwBTWXZjmlapuGic-ruITN.x-aip-live-06?itemId=/content/aip/journal/adva/3/10/10.1063/1.4828415&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/3/10/10.1063/1.4828415&pageURL=http://scitation.aip.org/content/aip/journal/adva/3/10/10.1063/1.4828415'
Right1,Right2,Right3,