Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. M. K. Ryu, S. K. Park, S. H. Yang, C. W. Byun, O. S. Kwon, E. S. Park, K. I. Cho, and C. S. Hwang, SID Symposium Digest of Technical Papers 41, 1367 (2010).
2. Y. Hirakata, D. Kubota, A. Yamashita, H. Miyake, M. Hayakawa, J. Koyama, S. Yamazaki, K. Okazaki, R. Sato, T. Cho, K. Tochibayashi, and M. Sakakura, SID Symposium Digest of Technical Papers 42, 32 (2011).
3. H. W. Zan, C. C. Yeh, H. F. Meng, C. C. Tsai, and L. H. Chen, Adv. Mater. 24, 3509 (2012).
4. J. Li, F. Zhou, H. P. Lin, W. Q. Zhu, J. H. Zhang, J. X. Jiang, and Z. L. Zhang, Curr. Appl. Phys. 12, 1288 (2012).
5. H. Bong, W. H. Lee, D. Y. Lee, B. J. Kim, H. J. Cho, and K. Cho, Appl. Phys. Lett. 96, 192115 (2010).
6. L. Zhang, J. Li, X. W. Zhang, X. Y. Jiang, and Z. L. Zhang, Appl. Phys. Lett. 95, 072112 (2009).
7. Y. H. Tai, L. S. Chou, H. L. Chiu, and B. C. Chen, IEEE Electron Device Lett. 33, 393 (2012).
8. J. Li, F. Zhou, H. P. Lin, W. Q. Zhu, J. H. Zhang, J. X. Jiang, and Z. L. Zhang, Vacuum 86, 1840 (2012).
9. K. S. Son, H. S. Kim, W. J. Maeng, J. S. Jung, K. H. Lee, T. S. Kim, J. S. Park, J. Y. Kwon, B. Koo, and S. Y. Lee, IEEE Electron Device Lett. 32, 164 (2011).
10. Y. G. Mo, M. Kim, K. S. Kim, C. M. Park, Y. S. Park, C. G. Choi, K. Uh, and S. Kim, SID Symposium Digest of Technical Papers 42, 472 (2011).
11. H. K. , Do, Y. Y. Dong, K. J. Hyun, H. K. Dae, and Y. L. Sang, Appl. Phys. Lett. 99, 172106 (2011).
12. E. Chong, K. C. Jo, and S. Y. Lee, Appl. Phys. Lett. 96, 152102 (2010).
13. R. L. Puurunen, J. Appl. Phys. 97, 121301 (2005).
14. B. Y. Oh, Y. H. Kim, H. J. Lee, B. Y. Kim, H. G. Park, J. W. Han, G. S. Heo, T. W. Kim, K. Y. Kim, and D. S. Seo, Semicond. Sci. Technol. 26, 085007 (2011).
15. J. Jang, K. Cho, S. Lee, and S. Kim, Nanotechnology 19, 015204 (2008).
16. J. H. Jun, B. Park, K. Cho, and S. Kim, Nanotechnology 20, 505201 (2009).
17. P. Barquinha, A. Pimentel, A. Marques, L. Pereira, R. Martins, and E. Fortunato, J. Non-Cryst. Solid 352, 1749 (2006).
18. A. H. Chen, H. T. Cao, H. Z. Zhang, L. Y. Liang, Z. M. Liu, Z. Yu, and Q. Wan, Microelectron. Eng. 87, 2019 (2010).
19. Y. Wang, X. W. Sun, G. K. L. Goh, and H. Y. Yu, IEEE Trans. Electron Devices 58, 480 (2011).
20. J. H. Chung, J. Y. Lee, H. S. Kim, N. W. Jang, and J. H. Kim, Thin Solid Films 516, 5597 (2008).
21. R. S. Johnson, G. Lucovsky, and J. G. Hong, Microelectron. Eng. 59, 385 (2001).
22. T. Y. Hsieh, T. C. Chang, T. C. Chen, M. Y. Tsai, Y. C. Chung, H. C. Ting, and C. Y. Chen, ECS Journal of Solid State Science and Technology 1, Q6 (2012).
23. E. H. Nicollian and J. R. Brews, MOS Physics and Technology (Wiley, New York, 1981).
24. L. Zhang, J. Li, X. W. Zhang, X. Y. Jiang, and Z. L. Zhang, Appl. Phys. Lett. 95, 072112 (2009).
25. J. K. Jeong, H. W. Yang, J. H. Jeong, Y. G. Mo, and H. D. Kim, Appl. Phys. Lett. 93, 123508 (2008).
26. H. Oh, S. K. Park, C. S. Hwang, S. Yang, and M. K. Ryu, Appl. Phys. Lett. 99, 022105 (2011).
27. C. Wu, X. Li, J. Lu, Z. Ye, J. Zhang, et al., Appl. Phys. Lett. 103, 082109 (2013).
28. X. Li, E. Xin, L. Chen, J. Shi, and J. Zhang, AIP Advances 3, 032137 (2013).

Data & Media loading...


Article metrics loading...



RF magnetron sputtered HfInZnO film and atomic layer deposition (ALD) AlO film were employed for thin film transistors (TFTs) as channel layer and gate insulator, respectively. To achieve HfInZnO-TFT with high performance and good bias stability, the thickness of HfInZnO active layer was optimized. The performance of HfInZnO-TFTs was found to be thickness dependent. As the HfInZnO active layer got thicker, the leakage current greatly increased from 1.73 × 10−12 to 2.54 × 10−8 A, the threshold voltage decreased from 7.4 to −4.7 V, while the subthreshold swing varied from 0.41 to 1.07 V/decade. Overall, the HfInZnO film showed superior performance, such as saturation mobility of 6.4 cm2/V s, threshold voltage of 4.2 V, subthreshold swing of 0.43 V/decade, on/off current ratio of 3 × 107 and shift of 3.6 V under = 10 V for 7200 s. The results demonstrate the possibility of fabricating TFTs using HfInZnO film as active layer and using ALD AlO as gate insulator.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd