1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Improved value for the silicon free exciton binding energy
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/3/11/10.1063/1.4828730
1.
1. G. G. MacFarlane, T. P. McLean, J. E. Quarrington, and V. Roberts, Phys. Rev. 111(5), 12451254 (1958).
http://dx.doi.org/10.1103/PhysRev.111.1245
2.
2. K. L. Shaklee and R. E. Nohory, Phys. Rev. Letts. 24(17), 942945 (1970).
http://dx.doi.org/10.1103/PhysRevLett.24.942
3.
3. W. Bludau, A. Onton, and W. Heinke, J. Appl. Phys. 45, 1846 (1974).
http://dx.doi.org/10.1063/1.1663501
4.
4. T. P. McClean and R. Loudon, J. Phys. Chem. Solids 13, 1 (1960).
http://dx.doi.org/10.1016/0022-3697(60)90121-9
5.
5. N. L. Lipari and A. Baldereschi, Phys. Rev. B 3(8), 24972503 (1971).
http://dx.doi.org/10.1103/PhysRevB.3.2497
6.
6. N. O. Lipari and M. Altarelli, Phys. Rev. B 15(10), 48834897 (1977).
http://dx.doi.org/10.1103/PhysRevB.15.4883
7.
7. M. Altarelli and N. O. Lipari, Phys. Rev. B 15(10), 48984906 (1977).
http://dx.doi.org/10.1103/PhysRevB.15.4898
8.
8. N. O. Lipari and M. Altarelli, Solid States Comms. 32, 171173 (1979).
http://dx.doi.org/10.1016/0038-1098(79)91081-0
9.
9. D. Labrie, M. L. W. Thewalt, I. J. Booth, and G. Kirczenow, Phys. Rev. Letts. 61(16), 18821884 (1988).
http://dx.doi.org/10.1103/PhysRevLett.61.1882
10.
10. J. M. Luttinger, Phys. Rev. 102, 1030 (1956).
http://dx.doi.org/10.1103/PhysRev.102.1030
11.
11. R. G. Humphreys, J. Phys. C 14, 2935 (1981).
http://dx.doi.org/10.1088/0022-3719/14/21/011
12.
12. D. M. Riffe, J. Opt. Soc. Am. B 19(5), 10921100 (2002).
http://dx.doi.org/10.1364/JOSAB.19.001092
13.
13. H. O. Di Rocco and A. Cruzado, ACTA Physica Polonica A 122(4), 666669 (2012).
14.
14. S. Zwerdling, K. J. Button, B. Lax, and L. M. Roth, Phys. Rev. Letts. 4(4), 173176 (1960).
http://dx.doi.org/10.1103/PhysRevLett.4.173
15.
15. G. Picus, E. Burstein, and B. Henvis, J. Phys. Chem. Solids 1, 7581 (1956).
http://dx.doi.org/10.1016/0022-3697(56)90013-0
16.
16. T. Timusk, H. Navarro, N. O. Lipari, and M. Altarelli, Solid States Comms. 25, 217219 (1978)
http://dx.doi.org/10.1016/0038-1098(78)90216-8
17.
17. I. Balslev, Phys. Rev. 143(2), 636647 (1966).
http://dx.doi.org/10.1103/PhysRev.143.636
18.
18. W. Kohn and J. M. Luttinger, Phys. Rev. 98, 915 (1955).
http://dx.doi.org/10.1103/PhysRev.98.915
19.
19. R. A. Faulkner, Phys. Rev. 18(4), 713 (1969).
http://dx.doi.org/10.1103/PhysRev.184.713
20.
20. A. Baldereschi and N. L. Lipari, Phys. Rev. B 3(2), 439451 (1971).
http://dx.doi.org/10.1103/PhysRevB.3.439
21.
21. H. Hasegawa, Phys. Rev. 129(3), 10291040 (1963),
http://dx.doi.org/10.1103/PhysRev.129.1029
22.
22. L. D. Laude, F. H. Pollak, and M. Cardona, Phys. Rev. B 3(8), 26232636 (1971).
http://dx.doi.org/10.1103/PhysRevB.3.2623
23.
23. M. Capizzi, J. C. Merle, and P. Fiorini, Solid States Comms. 24(7), 451455 (1977).
http://dx.doi.org/10.1016/0038-1098(77)90285-X
24.
24. W. Kohn and J. M. Luttinger, Phys. Rev. 97(4), 869883 (1955).
http://dx.doi.org/10.1103/PhysRev.97.869
25.
25.M3003: The Expression of Uncertainty and Confidence in Measurement, Edition 3, UK Accreditation Service, November (2012).
26.
26. R. J. Elliott, Phys. Rev. 108(6), 13841389 (1957).
http://dx.doi.org/10.1103/PhysRev.108.1384
27.
27. A. Onton and L. M. Foster, J. Appl. Phys 43(12), 50845090 (1972).
http://dx.doi.org/10.1063/1.1661076
28.
28. M. L. W. Thewalt and R. R. Parsons, Solid State Comms. 20, 9799 (1976).
http://dx.doi.org/10.1016/0038-1098(76)91708-7
29.
29. I. Balsev, Solid State Comms. 23, 205207 (1977).
http://dx.doi.org/10.1016/0038-1098(77)90442-2
30.
30. T. Nishino, M. Takeda, and Y. Hamakawa, Solid States Comms. 12, 11371140 (1973).
http://dx.doi.org/10.1016/0038-1098(73)90129-4
31.
31. G. Dresselhaus, J. Phys. Chem. Solids 1, 1422 (1956).
http://dx.doi.org/10.1016/0022-3697(56)90004-X
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/11/10.1063/1.4828730
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Portion of the far infrared absorption spectrum of silicon at 1.6K extracted from work published elsewhere 9 showing direct optical excitations from the excitonic ground state to an excited state roughly coinciding in energy to a 2P-like state labeled in the corresponding theory. 6 The five strong peaks labeled 1-5 are attributed to excitations from the multiple split levels of the excitonic ground state to this excited state (the two dashed lines show the splitting of level 1 into two closely spaced levels 1a and 1b). The dotted lines show the experimental data while the solid lines are theoretical fits to the data assuming parallel state dispersion curves, as in a hydrogenic model (fitting residues are shown in the lower portion of the figure).

Image of FIG. 2.

Click to view

FIG. 2.

Wavelength modulated absorption edge of silicon at 1.4K. Dotted lines show experimental data extracted from the high resolution work published elsewhere 28 while solid lines show fits to these data assuming contributions from the five ground state exciton levels at the energy separation shown in Fig. 1 . The absorption feature to the left corresponds to absorption with LO phonon emission while the stronger feature to the right corresponds to that with TO phonon emission. The threshold energies for each of the five ground state levels as deduced from the fitting process are indicated by the bars extending from the y-axis, with the length of the bars corresponding to the strength of each ground state component (the solid bar corresponds to the Gaussian component of the pseudo-Voigt fit while the dashed shows the Lorentzian).

Image of FIG. 3.

Click to view

FIG. 3.

Wavelength modulated absorption edge of silicon at 1.8K for absorption with TO phonon emission. Dotted lines show experimental data extracted from the work published elsewhere 29 with a broader instrumental slit-width than used than for the (independent) measurements of Fig. 2 . The solid lines show fits to these data assuming contributions from the five ground state exciton levels at the energy separation shown in Fig. 1 . As for Fig. 2 , the threshold energies for each ground state level deduced from the fitting process are indicated by the bars extending from the y-axis, with the length of the bars corresponding to the strength of each ground state component (the solid bar corresponds to the Gaussian component of the pseudo-Voigt fit while the dashed shows the Lorentzian). The dashed line shows a fit with the assumption of a single excitonic ground state, as used in previous work, with the corresponding threshold energy and Gaussian and Lorentzian components shown in the same way as for the five level fit. The inset shows the reported slit broadening for these measurements 29 that can be well fitted by a Gaussian broadening function of FWHM equal to 0.254 meV. (Absolute values of the photon energies have an uncertainty of 0.3 meV, 29 explaining the differences in these between Figs. 2 and 3.)

Tables

Generic image for table

Click to view

Table I.

Estimated excitonic binding energy from experimental measurement of transition energy between ground and excited states

Generic image for table

Click to view

Table II.

Excitonic binding energy for silicon under 580 MPa <001> uniaxial compressive stress at 1.6K (all energies in meV). 9

Generic image for table

Click to view

Table III.

Estimates of increase in excitonic binding energy in unstressed condition compared to the case of 580 MPa uniaxial <001> compressive stress.

Generic image for table

Click to view

Table IV.

Reassessment of Shaklee and Nahory 2 excitonic binding energy determinations based on digitization of the original data and the improved interpretation described in the text.

Generic image for table

Click to view

Table V.

Summary of the three new estimates of silicon's excitonic binding energy.

Loading

Article metrics loading...

/content/aip/journal/adva/3/11/10.1063/1.4828730
2013-11-05
2014-04-18

Abstract

The free exciton binding energy is a key parameter in silicon material and device physics. In particular, it provides the necessary link between the energy threshold for valence to conduction band optical absorption and the bandgap determining electronic properties. The long accepted low temperature binding energy value of 14.7 ± 0.4 meV is reassessed taking advantage of developments subsequent to its original determination, leading to the conclusion that this value is definitely an underestimate. Using three largely independent experimental data sets, an improved low temperature value of 15.01 ± 0.06 meV is deduced, in good agreement with the most comprehensive theoretical calculations to date.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/11/1.4828730.html;jsessionid=41hqrpmn1njqt.x-aip-live-06?itemId=/content/aip/journal/adva/3/11/10.1063/1.4828730&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Improved value for the silicon free exciton binding energy
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/11/10.1063/1.4828730
10.1063/1.4828730
SEARCH_EXPAND_ITEM