1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Improved value for the silicon free exciton binding energy
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/3/11/10.1063/1.4828730
1.
1. G. G. MacFarlane, T. P. McLean, J. E. Quarrington, and V. Roberts, Phys. Rev. 111(5), 12451254 (1958).
http://dx.doi.org/10.1103/PhysRev.111.1245
2.
2. K. L. Shaklee and R. E. Nohory, Phys. Rev. Letts. 24(17), 942945 (1970).
http://dx.doi.org/10.1103/PhysRevLett.24.942
3.
3. W. Bludau, A. Onton, and W. Heinke, J. Appl. Phys. 45, 1846 (1974).
http://dx.doi.org/10.1063/1.1663501
4.
4. T. P. McClean and R. Loudon, J. Phys. Chem. Solids 13, 1 (1960).
http://dx.doi.org/10.1016/0022-3697(60)90121-9
5.
5. N. L. Lipari and A. Baldereschi, Phys. Rev. B 3(8), 24972503 (1971).
http://dx.doi.org/10.1103/PhysRevB.3.2497
6.
6. N. O. Lipari and M. Altarelli, Phys. Rev. B 15(10), 48834897 (1977).
http://dx.doi.org/10.1103/PhysRevB.15.4883
7.
7. M. Altarelli and N. O. Lipari, Phys. Rev. B 15(10), 48984906 (1977).
http://dx.doi.org/10.1103/PhysRevB.15.4898
8.
8. N. O. Lipari and M. Altarelli, Solid States Comms. 32, 171173 (1979).
http://dx.doi.org/10.1016/0038-1098(79)91081-0
9.
9. D. Labrie, M. L. W. Thewalt, I. J. Booth, and G. Kirczenow, Phys. Rev. Letts. 61(16), 18821884 (1988).
http://dx.doi.org/10.1103/PhysRevLett.61.1882
10.
10. J. M. Luttinger, Phys. Rev. 102, 1030 (1956).
http://dx.doi.org/10.1103/PhysRev.102.1030
11.
11. R. G. Humphreys, J. Phys. C 14, 2935 (1981).
http://dx.doi.org/10.1088/0022-3719/14/21/011
12.
12. D. M. Riffe, J. Opt. Soc. Am. B 19(5), 10921100 (2002).
http://dx.doi.org/10.1364/JOSAB.19.001092
13.
13. H. O. Di Rocco and A. Cruzado, ACTA Physica Polonica A 122(4), 666669 (2012).
14.
14. S. Zwerdling, K. J. Button, B. Lax, and L. M. Roth, Phys. Rev. Letts. 4(4), 173176 (1960).
http://dx.doi.org/10.1103/PhysRevLett.4.173
15.
15. G. Picus, E. Burstein, and B. Henvis, J. Phys. Chem. Solids 1, 7581 (1956).
http://dx.doi.org/10.1016/0022-3697(56)90013-0
16.
16. T. Timusk, H. Navarro, N. O. Lipari, and M. Altarelli, Solid States Comms. 25, 217219 (1978)
http://dx.doi.org/10.1016/0038-1098(78)90216-8
17.
17. I. Balslev, Phys. Rev. 143(2), 636647 (1966).
http://dx.doi.org/10.1103/PhysRev.143.636
18.
18. W. Kohn and J. M. Luttinger, Phys. Rev. 98, 915 (1955).
http://dx.doi.org/10.1103/PhysRev.98.915
19.
19. R. A. Faulkner, Phys. Rev. 18(4), 713 (1969).
http://dx.doi.org/10.1103/PhysRev.184.713
20.
20. A. Baldereschi and N. L. Lipari, Phys. Rev. B 3(2), 439451 (1971).
http://dx.doi.org/10.1103/PhysRevB.3.439
21.
21. H. Hasegawa, Phys. Rev. 129(3), 10291040 (1963),
http://dx.doi.org/10.1103/PhysRev.129.1029
22.
22. L. D. Laude, F. H. Pollak, and M. Cardona, Phys. Rev. B 3(8), 26232636 (1971).
http://dx.doi.org/10.1103/PhysRevB.3.2623
23.
23. M. Capizzi, J. C. Merle, and P. Fiorini, Solid States Comms. 24(7), 451455 (1977).
http://dx.doi.org/10.1016/0038-1098(77)90285-X
24.
24. W. Kohn and J. M. Luttinger, Phys. Rev. 97(4), 869883 (1955).
http://dx.doi.org/10.1103/PhysRev.97.869
25.
25.M3003: The Expression of Uncertainty and Confidence in Measurement, Edition 3, UK Accreditation Service, November (2012).
26.
26. R. J. Elliott, Phys. Rev. 108(6), 13841389 (1957).
http://dx.doi.org/10.1103/PhysRev.108.1384
27.
27. A. Onton and L. M. Foster, J. Appl. Phys 43(12), 50845090 (1972).
http://dx.doi.org/10.1063/1.1661076
28.
28. M. L. W. Thewalt and R. R. Parsons, Solid State Comms. 20, 9799 (1976).
http://dx.doi.org/10.1016/0038-1098(76)91708-7
29.
29. I. Balsev, Solid State Comms. 23, 205207 (1977).
http://dx.doi.org/10.1016/0038-1098(77)90442-2
30.
30. T. Nishino, M. Takeda, and Y. Hamakawa, Solid States Comms. 12, 11371140 (1973).
http://dx.doi.org/10.1016/0038-1098(73)90129-4
31.
31. G. Dresselhaus, J. Phys. Chem. Solids 1, 1422 (1956).
http://dx.doi.org/10.1016/0022-3697(56)90004-X
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/11/10.1063/1.4828730
Loading
/content/aip/journal/adva/3/11/10.1063/1.4828730
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/3/11/10.1063/1.4828730
2013-11-05
2014-11-24

Abstract

The free exciton binding energy is a key parameter in silicon material and device physics. In particular, it provides the necessary link between the energy threshold for valence to conduction band optical absorption and the bandgap determining electronic properties. The long accepted low temperature binding energy value of 14.7 ± 0.4 meV is reassessed taking advantage of developments subsequent to its original determination, leading to the conclusion that this value is definitely an underestimate. Using three largely independent experimental data sets, an improved low temperature value of 15.01 ± 0.06 meV is deduced, in good agreement with the most comprehensive theoretical calculations to date.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/11/1.4828730.html;jsessionid=4tscpmqq9p55p.x-aip-live-03?itemId=/content/aip/journal/adva/3/11/10.1063/1.4828730&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Improved value for the silicon free exciton binding energy
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/11/10.1063/1.4828730
10.1063/1.4828730
SEARCH_EXPAND_ITEM