1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Reinforcement of CVD grown multi-walled carbon nanotubes by high temperature annealing
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/3/11/10.1063/1.4829272
1.
1. G. Overney, W. Zhong, and D. Tomanek, Zeitschift fur Physic D-atoms molecules and clusters 27, 93 (1993).
http://dx.doi.org/10.1007/BF01436769
2.
2. K. M. Liew, X. Q. He, and C. H. Wong, Acta Materiala 52, 2521 (2004).
http://dx.doi.org/10.1016/j.actamat.2004.01.043
3.
3. C. Li and T. W. Chou, Composites Science and Technology 63, 1517 (2003).
http://dx.doi.org/10.1016/S0266-3538(03)00072-1
4.
4. Y. Y. Zhang, C. M. Wang, and V. B. C. Tan, Journal of Applied Physics 103, 053505 (2008).
http://dx.doi.org/10.1063/1.2890146
5.
5. J. P. Lu, Phys. Rev. Lett. 79, 1297 (1997).
http://dx.doi.org/10.1103/PhysRevLett.79.1297
6.
6. M. M. J. Treacy, T. W. Ebbesen, and J. M. Gibson, Nature 381, 678 (1996).
http://dx.doi.org/10.1038/381678a0
7.
7. E. W. Wong, P. E. Sheehan, and C. M. Lieber, Science 277, 1971 (1997).
http://dx.doi.org/10.1126/science.277.5334.1971
8.
8. B. G. Demczyk, Y. M. Wang, J. Cumings, M. Hetman, W. Han, A. Zettl, and R. O. Ritchie, Materials Science and Engineering A 334,173 (2002).
http://dx.doi.org/10.1016/S0921-5093(01)01807-X
9.
9. J.-P. Salvetat, A. J. Kulik, J.-M. Bonard, G. Andrew, D. Briggs, T. Stockli, K. Metenier, S. Bonmany, F. Beguin, N. A. Burnham, and L. Forro, Advanced Materials 11, 161 (1999).
http://dx.doi.org/10.1002/(SICI)1521-4095(199902)11:2<161::AID-ADMA161>3.0.CO;2-J
10.
10. M. F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, and R. S. Ruoff, Science 287, 637 (2000).
http://dx.doi.org/10.1126/science.287.5453.637
11.
11. T. W. Ebbesen and P. M. Ajayan, Nature 358, 220 (1992).
http://dx.doi.org/10.1038/358220a0
12.
12. E. T. Thostenson, Z. Ren, T.-W. Chou, “Advances in the science and technology of carbon nanotubes and their composites: a review,” Composites Science and Technology 61, 18991912 (2001).
http://dx.doi.org/10.1016/S0266-3538(01)00094-X
13.
13. T. Kuzumaki, T. Hayashi, H. Ichinose, K. Miyazava, K. Ito, and Y. Ishida, Philosophical magazine A 77, 1461 (1998).
http://dx.doi.org/10.1080/01418619808214263
14.
14. M. Kumar and Y. Ando, J. of Nanoscience and Nanotechnology 10, 3739 (2010).
http://dx.doi.org/10.1166/jnn.2010.2939
15.
15. T. W. Ebbesen, Carbon nanotubes: Preparation and properties (CRC Press, New York, 1997), p.139.
16.
16. V. Shanov, Yeo-Heung Yun, and M. J. Schulz, Journal of the University of Chemical Technology and Metallurgy 41, 377 (2006).
17.
17. M. Endo, T. Hayashi, and Y.-A. Kim, Pure Appl. Chem. 78, 1703 (2006).
http://dx.doi.org/10.1351/pac200678091703
18.
18. M. Duchamp, R. Meunier, R. Smajda, M. Mionic, A. Magrez, J. W. Seo, L. Forró, B. Song, and D. Tománek, Journal of Applied Physics 108, 084314 (2010).
http://dx.doi.org/10.1063/1.3493049
19.
19. R. Andrews, D. Jacques, D. Qian, and E. C. Dickey, Carbon 39, 1681 (2001).
http://dx.doi.org/10.1016/S0008-6223(00)00301-8
20.
20. Y. A. Kim, T. Hayashi, M. Endo, Y. Kaburagi, T. Tsukada, J. Shan, K. Osato, and S. Tsuruoka, Carbon 43, 2243 (2005).
http://dx.doi.org/10.1016/j.carbon.2005.03.039
21.
21. B. Lukic, J. M. Seo, E. Couteau, K. Lee, S. Gradecak, R. Berkecz, K. Hernadi, S. Delpeux, T. Cacciaguerra, F. Beguin, A. Fonseca, J. B. Nagy, G. Csanyi, A. Kis, A. J. Kulik, and L. Forro, Appl. Phys. A 80, 695 (2005).
http://dx.doi.org/10.1007/s00339-004-3100-5
22.
22. G. Messina, V. Modafferi, S. Santangelo, P. Tripodi, M. G. Donato, M. Lanza, S. Galvagno, C. Milone, E. Piperopoulos, and A. Pistone, Diamond & Related Materials 17, 1482 (2008).
http://dx.doi.org/10.1016/j.diamond.2008.01.060
23.
23. J.-P. Tessonnier, M. Becker, W. Xia, F. Girgsdies, R. Blume, L. Yao, D. S. Su, M. Muhler, and R. Schlögl, Chem. Cat. Chem. 2, 1559 (2010).
24.
24. A. Usoltseva, V. Kuznetsov, N. Rudina, E. Moroz, M. Haluska, and S. Roth, Phys. Status Solidi B 244, 3920 (2007).
http://dx.doi.org/10.1002/pssb.200776143
25.
25. V. L. Kuznetsov, D. V. Krasnikov, A. N. Schmakov, and K. V. Elumeeva, Phys. Status Solidi B, 249, 2390. (2012).
http://dx.doi.org/10.1002/pssb.201200120
26.
26. V. L. Kuznetsov, K. V. Elumeeva, A. V. Ishchenko, N. Yu. Beylina, A. A. Stepashkin, S. I. Moseenkov, L. M. Plyasova, I. Yu. Molina, A. I. Romanenko, O. B. Anikeeva, and E. N. Tkachev, Phys. Status Solidi B 247, 2695 (2010).
http://dx.doi.org/10.1002/pssb.201000211
27.
27. A. Magrez, J. W. Seo, R. Smajda, M. Mionic, and L. Forro, Materials 3, 4871 (2010).
http://dx.doi.org/10.3390/ma3114871
28.
28. M. Mionic, D. T. L. Alexander, L. Forro, and A. Magrez, Phys. Status Solidi B 245, 1915 (2008).
http://dx.doi.org/10.1002/pssb.200879614
29.
29. A. Magrez, J. W. Seo, C. Miko, K. Hernadi, and L. Forro, J. Phys. Chem B 109, 10087 (2005).
http://dx.doi.org/10.1021/jp050363r
30.
30. A. Magrez, J. W. Seo, R. Smajda, B. Korbely, J. C. Andresen, M. Mionic, S. Casimirius, and L. Forro, ACS Nano 4, 3702 (2010).
http://dx.doi.org/10.1021/nn100279j
31.
31. A. Magrez, R. Smajda, J. W. Seo, E. Horvath, P. R. Ribic, J. C. Andresen, D. Acquaviva, A. Olariu, G. Laurenczy, and L. Forro, ACS Nano 5, 3428 (2011).
http://dx.doi.org/10.1021/nn200012z
32.
32. V. L. Kuznetsov and A. N. Usol'tseva, Method of production fine-grained supported catalysts and synthesis of carbon nanotubes. RU patent 2373995, 27.11.2009 Bull. 33
33.
33. G. Xu, H. Niwa, T. Imaizumi, H. Takikawa, T. Sakakibara, K. Yoshikawa, A. Kondo, and S. Itoh, New Diamond and Frontier Carbon Technology 15, 73 (2005).
34.
34. S. N. Bokova, E. D. Obraztsova, V. V. Grebenyukov, K. V. Elumeeva, A. V. Ishchenko, and V. L. Kuznetsov, “Raman diagnostics of multi-wall carbon nanotubes with a small wall number,” Phys. Status Solidi B 247, 2827 (2010).
http://dx.doi.org/10.1002/pssb.201000237
35.
35.See Ref. 26 and S. D. Borodanov, A. I. Romanenko, O. B. Anikeeva, V. L. Kuznetsov, K. V. Elumeeva, and S. I. Moseenkov, J. Sib. Fed. Univ. Math. Phys. 4, 143 (2011).
36.
36. J.-P. Salvetat, J.-M. Bonard, N. H. Thomson, A. J. Kulik, L. Forro, W. Benoit, and L. Zuppiroli, Appl. Phys. A 69, 255 (1999).
http://dx.doi.org/10.1007/s003390050999
37.
37. K. Lee, B. Lukic, A. Magrez, J. W. Seo, G. Andrew, D. Briggs, A. J. Kulik, and Laszlo Forro, Nano Letters 7, 1598 (2007).
http://dx.doi.org/10.1021/nl070502b
38.
38. B. Lukić, J. W. Seo, R. R. Bacsa, S. Delpeux, F. Béguin, G. Bister, A. Fonseca, J. B. Nagy, A. Kis, S. Jeney, A. J. Kulik, L. Forró, Nano Lett. 5, 2074 (2005).
http://dx.doi.org/10.1021/nl051034d
39.
39. E. F. Kukovitsky, S. G. l'vov, N. A. Sainov, V. A. Shustov, and L. A. Chernozatonski, Chem. Phys. Lett. 355, 497 (2002).
http://dx.doi.org/10.1016/S0009-2614(02)00283-X
40.
40. K. Bartsch and A. Leonhardt, Carbon 42, 1731 (2004).
http://dx.doi.org/10.1016/j.carbon.2004.03.003
41.
41. A. Kis, G. Csanyi, J. P. Salvetat, T. N. Lee, E. Couteau, et al.Reinforcement of single-walled carbon nanotube bundles by intertube bridging,” Nature Materials 3, 153 (2004).
http://dx.doi.org/10.1038/nmat1076
42.
42. V. L. Kuznetsov, Yu. V. Butenko, V. I. Zaikovskii, and A. L. Chuvilin, Carbon 42, 1057 (2004).
http://dx.doi.org/10.1016/j.carbon.2003.12.059
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/11/10.1063/1.4829272
Loading
/content/aip/journal/adva/3/11/10.1063/1.4829272
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/3/11/10.1063/1.4829272
2013-11-01
2014-08-01

Abstract

We report on the increase of the Young's modulus (E) of chemical vapor deposition (CVD) grown multi-walled carbon nanotubes (MWNTs) upon high temperature heat treatment. The post heat-treatment at 2200–2800ºC in a controlled atmosphere results in a considerable improvement of the microstructure, chemical stability and electro-physical properties of the nanotubes. The Young's modulus of MWNTs of different diameters was measured by the deflection of a single tube suspended across the hole of silicon nitride membrane and loaded by an atomic force microscope tip. Contrary to previous reports, a strong increase of E was feasible due to the improved growth conditions of pristine carbon nanotubes and to the improved heat treatment conditions. However, the elastic modulus of CVD grown MWNTs still shows strong diameter dependence resulting from the remaining structural inhomogeneities in large diameter nanotubes.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/11/1.4829272.html;jsessionid=1t9ntpcl0uxta.x-aip-live-06?itemId=/content/aip/journal/adva/3/11/10.1063/1.4829272&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Reinforcement of CVD grown multi-walled carbon nanotubes by high temperature annealing
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/11/10.1063/1.4829272
10.1063/1.4829272
SEARCH_EXPAND_ITEM