Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. G. Overney, W. Zhong, and D. Tomanek, Zeitschift fur Physic D-atoms molecules and clusters 27, 93 (1993).
2. K. M. Liew, X. Q. He, and C. H. Wong, Acta Materiala 52, 2521 (2004).
3. C. Li and T. W. Chou, Composites Science and Technology 63, 1517 (2003).
4. Y. Y. Zhang, C. M. Wang, and V. B. C. Tan, Journal of Applied Physics 103, 053505 (2008).
5. J. P. Lu, Phys. Rev. Lett. 79, 1297 (1997).
6. M. M. J. Treacy, T. W. Ebbesen, and J. M. Gibson, Nature 381, 678 (1996).
7. E. W. Wong, P. E. Sheehan, and C. M. Lieber, Science 277, 1971 (1997).
8. B. G. Demczyk, Y. M. Wang, J. Cumings, M. Hetman, W. Han, A. Zettl, and R. O. Ritchie, Materials Science and Engineering A 334,173 (2002).
9. J.-P. Salvetat, A. J. Kulik, J.-M. Bonard, G. Andrew, D. Briggs, T. Stockli, K. Metenier, S. Bonmany, F. Beguin, N. A. Burnham, and L. Forro, Advanced Materials 11, 161 (1999).<161::AID-ADMA161>3.0.CO;2-J
10. M. F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, and R. S. Ruoff, Science 287, 637 (2000).
11. T. W. Ebbesen and P. M. Ajayan, Nature 358, 220 (1992).
12. E. T. Thostenson, Z. Ren, T.-W. Chou, “Advances in the science and technology of carbon nanotubes and their composites: a review,” Composites Science and Technology 61, 18991912 (2001).
13. T. Kuzumaki, T. Hayashi, H. Ichinose, K. Miyazava, K. Ito, and Y. Ishida, Philosophical magazine A 77, 1461 (1998).
14. M. Kumar and Y. Ando, J. of Nanoscience and Nanotechnology 10, 3739 (2010).
15. T. W. Ebbesen, Carbon nanotubes: Preparation and properties (CRC Press, New York, 1997), p.139.
16. V. Shanov, Yeo-Heung Yun, and M. J. Schulz, Journal of the University of Chemical Technology and Metallurgy 41, 377 (2006).
17. M. Endo, T. Hayashi, and Y.-A. Kim, Pure Appl. Chem. 78, 1703 (2006).
18. M. Duchamp, R. Meunier, R. Smajda, M. Mionic, A. Magrez, J. W. Seo, L. Forró, B. Song, and D. Tománek, Journal of Applied Physics 108, 084314 (2010).
19. R. Andrews, D. Jacques, D. Qian, and E. C. Dickey, Carbon 39, 1681 (2001).
20. Y. A. Kim, T. Hayashi, M. Endo, Y. Kaburagi, T. Tsukada, J. Shan, K. Osato, and S. Tsuruoka, Carbon 43, 2243 (2005).
21. B. Lukic, J. M. Seo, E. Couteau, K. Lee, S. Gradecak, R. Berkecz, K. Hernadi, S. Delpeux, T. Cacciaguerra, F. Beguin, A. Fonseca, J. B. Nagy, G. Csanyi, A. Kis, A. J. Kulik, and L. Forro, Appl. Phys. A 80, 695 (2005).
22. G. Messina, V. Modafferi, S. Santangelo, P. Tripodi, M. G. Donato, M. Lanza, S. Galvagno, C. Milone, E. Piperopoulos, and A. Pistone, Diamond & Related Materials 17, 1482 (2008).
23. J.-P. Tessonnier, M. Becker, W. Xia, F. Girgsdies, R. Blume, L. Yao, D. S. Su, M. Muhler, and R. Schlögl, Chem. Cat. Chem. 2, 1559 (2010).
24. A. Usoltseva, V. Kuznetsov, N. Rudina, E. Moroz, M. Haluska, and S. Roth, Phys. Status Solidi B 244, 3920 (2007).
25. V. L. Kuznetsov, D. V. Krasnikov, A. N. Schmakov, and K. V. Elumeeva, Phys. Status Solidi B, 249, 2390. (2012).
26. V. L. Kuznetsov, K. V. Elumeeva, A. V. Ishchenko, N. Yu. Beylina, A. A. Stepashkin, S. I. Moseenkov, L. M. Plyasova, I. Yu. Molina, A. I. Romanenko, O. B. Anikeeva, and E. N. Tkachev, Phys. Status Solidi B 247, 2695 (2010).
27. A. Magrez, J. W. Seo, R. Smajda, M. Mionic, and L. Forro, Materials 3, 4871 (2010).
28. M. Mionic, D. T. L. Alexander, L. Forro, and A. Magrez, Phys. Status Solidi B 245, 1915 (2008).
29. A. Magrez, J. W. Seo, C. Miko, K. Hernadi, and L. Forro, J. Phys. Chem B 109, 10087 (2005).
30. A. Magrez, J. W. Seo, R. Smajda, B. Korbely, J. C. Andresen, M. Mionic, S. Casimirius, and L. Forro, ACS Nano 4, 3702 (2010).
31. A. Magrez, R. Smajda, J. W. Seo, E. Horvath, P. R. Ribic, J. C. Andresen, D. Acquaviva, A. Olariu, G. Laurenczy, and L. Forro, ACS Nano 5, 3428 (2011).
32. V. L. Kuznetsov and A. N. Usol'tseva, Method of production fine-grained supported catalysts and synthesis of carbon nanotubes. RU patent 2373995, 27.11.2009 Bull. 33
33. G. Xu, H. Niwa, T. Imaizumi, H. Takikawa, T. Sakakibara, K. Yoshikawa, A. Kondo, and S. Itoh, New Diamond and Frontier Carbon Technology 15, 73 (2005).
34. S. N. Bokova, E. D. Obraztsova, V. V. Grebenyukov, K. V. Elumeeva, A. V. Ishchenko, and V. L. Kuznetsov, “Raman diagnostics of multi-wall carbon nanotubes with a small wall number,” Phys. Status Solidi B 247, 2827 (2010).
35.See Ref. 26 and S. D. Borodanov, A. I. Romanenko, O. B. Anikeeva, V. L. Kuznetsov, K. V. Elumeeva, and S. I. Moseenkov, J. Sib. Fed. Univ. Math. Phys. 4, 143 (2011).
36. J.-P. Salvetat, J.-M. Bonard, N. H. Thomson, A. J. Kulik, L. Forro, W. Benoit, and L. Zuppiroli, Appl. Phys. A 69, 255 (1999).
37. K. Lee, B. Lukic, A. Magrez, J. W. Seo, G. Andrew, D. Briggs, A. J. Kulik, and Laszlo Forro, Nano Letters 7, 1598 (2007).
38. B. Lukić, J. W. Seo, R. R. Bacsa, S. Delpeux, F. Béguin, G. Bister, A. Fonseca, J. B. Nagy, A. Kis, S. Jeney, A. J. Kulik, L. Forró, Nano Lett. 5, 2074 (2005).
39. E. F. Kukovitsky, S. G. l'vov, N. A. Sainov, V. A. Shustov, and L. A. Chernozatonski, Chem. Phys. Lett. 355, 497 (2002).
40. K. Bartsch and A. Leonhardt, Carbon 42, 1731 (2004).
41. A. Kis, G. Csanyi, J. P. Salvetat, T. N. Lee, E. Couteau, et al.Reinforcement of single-walled carbon nanotube bundles by intertube bridging,” Nature Materials 3, 153 (2004).
42. V. L. Kuznetsov, Yu. V. Butenko, V. I. Zaikovskii, and A. L. Chuvilin, Carbon 42, 1057 (2004).

Data & Media loading...


Article metrics loading...



We report on the increase of the Young's modulus (E) of chemical vapor deposition (CVD) grown multi-walled carbon nanotubes (MWNTs) upon high temperature heat treatment. The post heat-treatment at 2200–2800ºC in a controlled atmosphere results in a considerable improvement of the microstructure, chemical stability and electro-physical properties of the nanotubes. The Young's modulus of MWNTs of different diameters was measured by the deflection of a single tube suspended across the hole of silicon nitride membrane and loaded by an atomic force microscope tip. Contrary to previous reports, a strong increase of E was feasible due to the improved growth conditions of pristine carbon nanotubes and to the improved heat treatment conditions. However, the elastic modulus of CVD grown MWNTs still shows strong diameter dependence resulting from the remaining structural inhomogeneities in large diameter nanotubes.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd