1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
The influence of self-assembly behavior of nanoparticles on the dielectric polymer composites
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/3/11/10.1063/1.4830279
1.
1. B. Chu, X. Zhou, K. Ren, B. Neese, M. Lin, Q. Wang, F. Bauer, and Q. M. Zhang, Science 313, 334 (2006).
http://dx.doi.org/10.1126/science.1127798
2.
2. E. Frackowiaka and F. Beguinb, Carbon 39, 937 (2001).
http://dx.doi.org/10.1016/S0008-6223(00)00183-4
3.
3. Z. Wu, W. Ren, D. Wang, F. Li, B. Liu, and H. Cheng, ACS Nano 4, 5835 (2010).
http://dx.doi.org/10.1021/nn101754k
4.
4. P. Kim, S. C. Jones, P. J. Hotchkiss, J. N. Haddock, B. Kippelen, S. R. Marder, and J. W. Perry, Adv. Mater. 19, 1001 (2007).
http://dx.doi.org/10.1002/adma.200602422
5.
5. Z. M. Dang, L. Wang, H. Y. Wang, C. W. Nan, D. Xie, Y. Yin, and S. C. Tjong, Appl. Phys. Lett. 86, 172905 (2005).
http://dx.doi.org/10.1063/1.1920408
6.
6. J. K. Yuan, S. H. Yao, Z. M. Dang, A. Sylvestre, M. Genestoux, and J. Bai, J. Phys. Chem. C 115, 5515 (2011).
http://dx.doi.org/10.1021/jp1117163
7.
7. G. Wang, ACS Appl. Mater. Interfaces 2(5), 1290 (2010).
http://dx.doi.org/10.1021/am100296u
8.
8. R. P. Bagwe, L. R. Hilliard, and W. Tan, Langmuir 22, 4357 (2006).
http://dx.doi.org/10.1021/la052797j
9.
9. P. Kim, N. M. Doss, J. P. Tillotson, P. J. Hotchkiss, M. J. Pan, S. R. Marder, J. Li, J. P. Calame, and J. W. Perry, ACS Nano 3, 2581 (2009).
http://dx.doi.org/10.1021/nn9006412
10.
10. S. Wu, W. Li, M. Lin, Q. Burlingame, Q. Chen, A. Payzant, K. Xiao, and Q. M. Zhang, Advanced Materials 25, 1734 (2013).
http://dx.doi.org/10.1002/adma.201204072
11.
11. Q. Chen, Y. Wang, X. Zhou, Q. M. Zhang, and S. Zhang, Appl. Phys. Lett. 92, 142909 (2008).
http://dx.doi.org/10.1063/1.2903115
12.
12. Y. Shen, Y. Lin, M. Li, and C. W. Nan, Adv. Mater. 19, 1418 (2007).
http://dx.doi.org/10.1002/adma.200602097
13.
13. C. Yang, Y. Lin, and C. W. Nan, Carbon 47, 1096 (2009).
http://dx.doi.org/10.1016/j.carbon.2008.12.037
14.
14. M. Panda, V. Srinivas, and A. K. Thakur, Appl. Phys. Lett. 93, 242908 (2008).
http://dx.doi.org/10.1063/1.3054163
15.
15. W. Li, L. Yu, Y. Zhu, and D. Hua, J. Phys. Chem. C 114 (33), 14004 (2010).
http://dx.doi.org/10.1021/jp103086y
16.
16. M. Grzelczak, J. Vermant, E. M. Furst, and L. M. Liz-Marzán, ACS Nano 4 (7), 3591 (2010).
http://dx.doi.org/10.1021/nn100869j
17.
17. A. Böker, J. He, T. Emrick, and T. P. Russell, Soft Matter 3, 1231 (2007).
http://dx.doi.org/10.1039/b706609k
18.
18. L. Lin, T. Wu, W. Chen, and A. T. S. Wee, Appl. Phys. Lett. 103, 032408 (2013).
http://dx.doi.org/10.1063/1.4815998
19.
19. A. C. Balazs, T. Emrick, and T. P. Russell, Science 314,1107 (2006).
http://dx.doi.org/10.1126/science.1130557
20.
20. Z. Yu, J. Fan, B. Z. Tian, and D. Y. Zhao, Chem. Mat. 16, 889 (2004).
http://dx.doi.org/10.1021/cm035011g
21.
21. S. Bose, C. Ozdilek, J. Leys, J. W. Seo, M. Wübbenhorst, J. Vermant, and P. Moldenaers, ACS Appl. Mater. Inter. 2, 800 (2010).
http://dx.doi.org/10.1021/am9008067
22.
22. M. Grannan, J. C. Garland, and D. B. Tanner, Phys. Rev. Lett. 46, 375 (1981).
http://dx.doi.org/10.1103/PhysRevLett.46.375
23.
23. D. J. Bergman and Y. Imry, Phys. Rev. Lett. 39, 1222 (1977).
http://dx.doi.org/10.1103/PhysRevLett.39.1222
24.
24. Y. Song, T. W. Noh, S. I. Lee, and J. R. Gaines, Phys. Rev. B 33, 904 (1986).
http://dx.doi.org/10.1103/PhysRevB.33.904
25.
25. S. Y. Gefen, A. Aharony, and S. Alexander, Phys. Rev. Lett. 50, 77 (1983).
http://dx.doi.org/10.1103/PhysRevLett.50.77
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/11/10.1063/1.4830279
Loading
/content/aip/journal/adva/3/11/10.1063/1.4830279
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/3/11/10.1063/1.4830279
2013-11-07
2014-08-22

Abstract

To clearify the influence of the distribution of the conductive nanoparticles on the dielectric properties of the corresponding polymer composites, the microstructure and dielectric character of the composites based on the oleic acid modified ferroferric oxide and polyvinylidene fluoride (PVDF) polymer have been studied experimentally. It is found that these composites exhibit a normal percolative phase transition over the filler content from insulator to conductor, consistent with the classical percolation theory. However, when the percentage of fillers is at a certain value which is below the percolation threshold, these nanoparticles can assemble into a special porous structure in the PVDF matrix, associated with the enhancement of dielectric constant at low frequency. In addition, the controllable dispersion of conducting nanoparticles in a polymer matrix can prevent premature agglomeration at low filling fractions and avoid the appearance of anomalously early percolation. Therefore, the self-assembly behavior of nanoparticles can be beneficial to preparation of the high dielectric constant and low loss composites for the application of electric energy storage.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/11/1.4830279.html;jsessionid=1txn4thmrrgof.x-aip-live-03?itemId=/content/aip/journal/adva/3/11/10.1063/1.4830279&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: The influence of self-assembly behavior of nanoparticles on the dielectric polymer composites
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/11/10.1063/1.4830279
10.1063/1.4830279
SEARCH_EXPAND_ITEM