Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. B. Chu, X. Zhou, K. Ren, B. Neese, M. Lin, Q. Wang, F. Bauer, and Q. M. Zhang, Science 313, 334 (2006).
2. E. Frackowiaka and F. Beguinb, Carbon 39, 937 (2001).
3. Z. Wu, W. Ren, D. Wang, F. Li, B. Liu, and H. Cheng, ACS Nano 4, 5835 (2010).
4. P. Kim, S. C. Jones, P. J. Hotchkiss, J. N. Haddock, B. Kippelen, S. R. Marder, and J. W. Perry, Adv. Mater. 19, 1001 (2007).
5. Z. M. Dang, L. Wang, H. Y. Wang, C. W. Nan, D. Xie, Y. Yin, and S. C. Tjong, Appl. Phys. Lett. 86, 172905 (2005).
6. J. K. Yuan, S. H. Yao, Z. M. Dang, A. Sylvestre, M. Genestoux, and J. Bai, J. Phys. Chem. C 115, 5515 (2011).
7. G. Wang, ACS Appl. Mater. Interfaces 2(5), 1290 (2010).
8. R. P. Bagwe, L. R. Hilliard, and W. Tan, Langmuir 22, 4357 (2006).
9. P. Kim, N. M. Doss, J. P. Tillotson, P. J. Hotchkiss, M. J. Pan, S. R. Marder, J. Li, J. P. Calame, and J. W. Perry, ACS Nano 3, 2581 (2009).
10. S. Wu, W. Li, M. Lin, Q. Burlingame, Q. Chen, A. Payzant, K. Xiao, and Q. M. Zhang, Advanced Materials 25, 1734 (2013).
11. Q. Chen, Y. Wang, X. Zhou, Q. M. Zhang, and S. Zhang, Appl. Phys. Lett. 92, 142909 (2008).
12. Y. Shen, Y. Lin, M. Li, and C. W. Nan, Adv. Mater. 19, 1418 (2007).
13. C. Yang, Y. Lin, and C. W. Nan, Carbon 47, 1096 (2009).
14. M. Panda, V. Srinivas, and A. K. Thakur, Appl. Phys. Lett. 93, 242908 (2008).
15. W. Li, L. Yu, Y. Zhu, and D. Hua, J. Phys. Chem. C 114 (33), 14004 (2010).
16. M. Grzelczak, J. Vermant, E. M. Furst, and L. M. Liz-Marzán, ACS Nano 4 (7), 3591 (2010).
17. A. Böker, J. He, T. Emrick, and T. P. Russell, Soft Matter 3, 1231 (2007).
18. L. Lin, T. Wu, W. Chen, and A. T. S. Wee, Appl. Phys. Lett. 103, 032408 (2013).
19. A. C. Balazs, T. Emrick, and T. P. Russell, Science 314,1107 (2006).
20. Z. Yu, J. Fan, B. Z. Tian, and D. Y. Zhao, Chem. Mat. 16, 889 (2004).
21. S. Bose, C. Ozdilek, J. Leys, J. W. Seo, M. Wübbenhorst, J. Vermant, and P. Moldenaers, ACS Appl. Mater. Inter. 2, 800 (2010).
22. M. Grannan, J. C. Garland, and D. B. Tanner, Phys. Rev. Lett. 46, 375 (1981).
23. D. J. Bergman and Y. Imry, Phys. Rev. Lett. 39, 1222 (1977).
24. Y. Song, T. W. Noh, S. I. Lee, and J. R. Gaines, Phys. Rev. B 33, 904 (1986).
25. S. Y. Gefen, A. Aharony, and S. Alexander, Phys. Rev. Lett. 50, 77 (1983).

Data & Media loading...


Article metrics loading...



To clearify the influence of the distribution of the conductive nanoparticles on the dielectric properties of the corresponding polymer composites, the microstructure and dielectric character of the composites based on the oleic acid modified ferroferric oxide and polyvinylidene fluoride (PVDF) polymer have been studied experimentally. It is found that these composites exhibit a normal percolative phase transition over the filler content from insulator to conductor, consistent with the classical percolation theory. However, when the percentage of fillers is at a certain value which is below the percolation threshold, these nanoparticles can assemble into a special porous structure in the PVDF matrix, associated with the enhancement of dielectric constant at low frequency. In addition, the controllable dispersion of conducting nanoparticles in a polymer matrix can prevent premature agglomeration at low filling fractions and avoid the appearance of anomalously early percolation. Therefore, the self-assembly behavior of nanoparticles can be beneficial to preparation of the high dielectric constant and low loss composites for the application of electric energy storage.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd