Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. P. E. Wolf and G. Maret, Phys. Rev. Lett. 55, 2696 (1985).
2. P. Sheng, “Introduction to wave scattering, localization and mesoscopic phenomena” (2006).
3. M. P. V. Albada and A. Lagendijk, Phys. Rev. Lett. 55, 2692 (1985).
4. D. S. Wiersma, M. P. van Albada, and A. Lagendijk, Phys. Rev. Lett. 75, 1739 (1995).
5. A. Lagendijk, B. van Tiggelen, and D. S. Wiersma, Phys.Today 62, 2429 (2009).
6. E. Yablonovitch, T. J. Gmitter, K. M. Leung, E. Gmitter, T. J. Leung, “Photonic band structure: the face-centered-cubic case employing nonspherical atoms,” Phys. Rev. Lett. 67(17), 22952298 (1991).
7. T. F. Krauss, R. M. DeLaRue, S. Brand, “Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths,” Nature 383(6602), 699702 (1996).
8. E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett. 58(20), 20592062 (1987).
9. V. P. Bykov, “Spontaneous Emission in a Periodic Structure,” Soviet Journal of Experimental and Theoretical Physics 35, 269273 (1972).
10. V. P. Bykov, “Spontaneous emission from a medium with a band spectrum,” Quantum Electronics 4 (7), 861871 (1975).
11. Y. Qiu, H. C. Hao, J. Zhou, M. Lu, “A close to unity and all-solar-spectrum absorption by ion-sputtering induced Si nanocone arrays,” Optics Express 20, 22087 (2012).
12. J. W. S. Rayleigh, “On the remarkable phenomenon of crystalline reflexion described by Prof. Stokes,” Phil. Mag 26, 256265 (1888).
13. K. Ohtaka, “Energy band of photons and low-energy photon diffraction,” Physical Review B 19(10), 50575067 (1979).
14. M. Kashiwagi, K. Saitoh, K. Takenaga, S. Tanigawa, S. Matsuo, and M. Fujimaki, “Effectively single-mode all-solid photonic bandgap fiber with large effective area and low bending loss for compact high-power all-fiber lasers,” Optics Express 20, 15061 (2012).
15. Z. Cao, X. Y. Qi, X. Q. Feng, Z. Y. Ren, G. Q. Zhang, and J. T. Bai, “Light controlling in transverse separation modulated photonic lattices,” Optics Express 20, 19119 (2012).
16. B. Ung, A. Mazhorova, A. Dupuis, M. Rozé, and M. Skorobogatiy, “Polymer microstructured optical fibers for terahertz wave guiding,” Optics Express 19, B848 (2011).
17.Review: S. Johnson (MIT) Lecture 3: Fabrication technologies for 3d photonic crystals.
18. B. Alvaro, C. Emmanuel, G. Serguei, I. Marta, L. Stephen, W. L. Cefe, M. Francisco et al., “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405(6785), 437440 (2000).
19. Mathias Kolle, Photonic Structures Inspired by Nature, 5th ed. (2011), ISBN 978-3-642-15168-2.
20. M. H. Bartl et al., “Discovery of a diamond-based photonic crystal structure in beetle scales,” Phys. Rev. Lett. 77(5) 050904R (2008).
21. T. Sakamoto, T. Mori, T. Yamamoto, L. Ma, N. Hanzawa, S. Aozasa, K. Tsujikawa, and S. Tomita, “Transmission over large-core few-mode photonic crystal fiber using distance-independent modal dispersion compensation technique,” Optics Express 19, B478 (2011).
22. J. Ouellette, “Seeing the Future in Photonic Crystals,” The Industrial Physicist 7(6), 1417 (DECEMBER 2001/JANUARY 2002).
23. S. Godefroo, M. Hayne, M. Jivanescu, A. Stesmans, M. Zacharias, O. I. Lebedev, G. Van Tendeloo, and V. V. Moshchalkov, Nature Nanotechnology 3, 174 (2008).
24. M. R. Gartia, Y. Chen, and G. L. Liu, Appl. Phys. Rev. Lett. 99, 151902 (2011).
25. P. W. Anderson, Phil. Mag. B 52, 505509 (1985).
26. S. Karbasi, C. R. Mirr, R. J. Frazier, P. G. Yarandi, K. W. Koch, and A. Mafi, “Detailed investigation of the impact of the fiber design parameters on the transverse Anderson localization of light in disordered optical fibers,” Optics Express 20, 18692 (2012).
27. T. Schwartz, G. Bartal, S. Fishman, and M. Segev, Nature (London) 446, 52 (2007).
28. C. Conti and A. Fratalocchi, Nature Physics 14, 794 (2008).
29. L. Martin, G. D. Giuseppe, A. Perez-Leija, R. Keil, F. Dreisow, M. Heinrich, S. Nolte, A. Szameit, A. F. Abouraddy, D. N. Christodoulides, and B. E. A. Saleh, Optics Express 19, 13636 (2011).
30. B. A. van Tiggelen, Phys. Rev. Lett. 75, 422 (1995).
31. A. Sparenberg, G. L. J. A. Rikken, and B. A. van Tiggelen, Phys. Rev. Lett. 79, 757 (1997).
32. F. Scheffold and G. Maret, Phys. Rev. Lett. 81, 5800 (1998).
33. D. S. Wiersma, M. Colocci, R. Righini, and F. Aliev, Phys. Rev. B 64, 144208 (2001).
34. G. Fujii, T. Matsumoto, T. Takahashi, and T. Ueta, “Study on transition from photonic-crystal laser to random laser,” Optics Express 20, 7300 (2012).
35. A. C. T. Thijssen, M. J. Cryan, J. G. Rarity, and R. Oulton, “Transfer of arbitrary quantum emitter states to near-field photon superpositions in nanocavities,” Optics Express 20, 22412 (2012).
36. A. Taflove and S. C. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2000).
37. L. Y. Cao, B. Nabet, and J. E. Spanier, Phys. Rev. Lett. 96, 157402 (2006).
38. Y. B. Wu, Y. F. Wang, and X. W. Cao, J. Appl. Phys. 105, 023103 (2009).
39. Y. B. Wu, Y. F. Wang, and X. W. Cao, J. Appl. Phys. 106, 053106 (2009).
40. D. E. Aspnes and A. A. Studna, Phys. Rev. B 27, 985 (1983).

Data & Media loading...


Article metrics loading...



The light localization effects in silicon photonic crystal cavities at different disorder degrees have been studied using the finite difference time domain (FDTD) method in this paper. Numerical results showed that localization occurs and enhancement can be gained in the region of the cavity under certain conditions. The stabilities of the localization effects due to the structural perturbations have been investigated too. Detailed studies showed that when the degree of structural disorder is small(about 10%), the localization effects are stable, the maximum enhancement factor can reach 16.5 for incident wavelength of 785 nm and 23 for 850 nm in the cavity, with the degree of disorder about 8%. The equivalent diameter of the localized spot is almost constant at different disorder degrees, approximating to , which turned out to be independent on the structural perturbation.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd