Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/3/11/10.1063/1.4830280
1.
1. P. E. Wolf and G. Maret, Phys. Rev. Lett. 55, 2696 (1985).
http://dx.doi.org/10.1103/PhysRevLett.55.2696
2.
2. P. Sheng, “Introduction to wave scattering, localization and mesoscopic phenomena” (2006).
3.
3. M. P. V. Albada and A. Lagendijk, Phys. Rev. Lett. 55, 2692 (1985).
http://dx.doi.org/10.1103/PhysRevLett.55.2692
4.
4. D. S. Wiersma, M. P. van Albada, and A. Lagendijk, Phys. Rev. Lett. 75, 1739 (1995).
http://dx.doi.org/10.1103/PhysRevLett.75.1739
5.
5. A. Lagendijk, B. van Tiggelen, and D. S. Wiersma, Phys.Today 62, 2429 (2009).
http://dx.doi.org/10.1063/1.3206091
6.
6. E. Yablonovitch, T. J. Gmitter, K. M. Leung, E. Gmitter, T. J. Leung, “Photonic band structure: the face-centered-cubic case employing nonspherical atoms,” Phys. Rev. Lett. 67(17), 22952298 (1991).
http://dx.doi.org/10.1103/PhysRevLett.67.2295
7.
7. T. F. Krauss, R. M. DeLaRue, S. Brand, “Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths,” Nature 383(6602), 699702 (1996).
http://dx.doi.org/10.1038/383699a0
8.
8. E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett. 58(20), 20592062 (1987).
http://dx.doi.org/10.1103/PhysRevLett.58.2059
9.
9. V. P. Bykov, “Spontaneous Emission in a Periodic Structure,” Soviet Journal of Experimental and Theoretical Physics 35, 269273 (1972).
10.
10. V. P. Bykov, “Spontaneous emission from a medium with a band spectrum,” Quantum Electronics 4 (7), 861871 (1975).
http://dx.doi.org/10.1070/QE1975v004n07ABEH009654
11.
11. Y. Qiu, H. C. Hao, J. Zhou, M. Lu, “A close to unity and all-solar-spectrum absorption by ion-sputtering induced Si nanocone arrays,” Optics Express 20, 22087 (2012).
http://dx.doi.org/10.1364/OE.20.022087
12.
12. J. W. S. Rayleigh, “On the remarkable phenomenon of crystalline reflexion described by Prof. Stokes,” Phil. Mag 26, 256265 (1888).
13.
13. K. Ohtaka, “Energy band of photons and low-energy photon diffraction,” Physical Review B 19(10), 50575067 (1979).
http://dx.doi.org/10.1103/PhysRevB.19.5057
14.
14. M. Kashiwagi, K. Saitoh, K. Takenaga, S. Tanigawa, S. Matsuo, and M. Fujimaki, “Effectively single-mode all-solid photonic bandgap fiber with large effective area and low bending loss for compact high-power all-fiber lasers,” Optics Express 20, 15061 (2012).
http://dx.doi.org/10.1364/OE.20.015061
15.
15. Z. Cao, X. Y. Qi, X. Q. Feng, Z. Y. Ren, G. Q. Zhang, and J. T. Bai, “Light controlling in transverse separation modulated photonic lattices,” Optics Express 20, 19119 (2012).
http://dx.doi.org/10.1364/OE.20.019119
16.
16. B. Ung, A. Mazhorova, A. Dupuis, M. Rozé, and M. Skorobogatiy, “Polymer microstructured optical fibers for terahertz wave guiding,” Optics Express 19, B848 (2011).
http://dx.doi.org/10.1364/OE.19.00B848
17.
17.Review: S. Johnson (MIT) Lecture 3: Fabrication technologies for 3d photonic crystals.
18.
18. B. Alvaro, C. Emmanuel, G. Serguei, I. Marta, L. Stephen, W. L. Cefe, M. Francisco et al., “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405(6785), 437440 (2000).
http://dx.doi.org/10.1038/35013024
19.
19. Mathias Kolle, Photonic Structures Inspired by Nature, 5th ed. (2011), ISBN 978-3-642-15168-2.
20.
20. M. H. Bartl et al., “Discovery of a diamond-based photonic crystal structure in beetle scales,” Phys. Rev. Lett. 77(5) 050904R (2008).
http://dx.doi.org/10.1103/PhysRevE.77.050904
21.
21. T. Sakamoto, T. Mori, T. Yamamoto, L. Ma, N. Hanzawa, S. Aozasa, K. Tsujikawa, and S. Tomita, “Transmission over large-core few-mode photonic crystal fiber using distance-independent modal dispersion compensation technique,” Optics Express 19, B478 (2011).
http://dx.doi.org/10.1364/OE.19.00B478
22.
22. J. Ouellette, “Seeing the Future in Photonic Crystals,” The Industrial Physicist 7(6), 1417 (DECEMBER 2001/JANUARY 2002).
23.
23. S. Godefroo, M. Hayne, M. Jivanescu, A. Stesmans, M. Zacharias, O. I. Lebedev, G. Van Tendeloo, and V. V. Moshchalkov, Nature Nanotechnology 3, 174 (2008).
http://dx.doi.org/10.1038/nnano.2008.7
24.
24. M. R. Gartia, Y. Chen, and G. L. Liu, Appl. Phys. Rev. Lett. 99, 151902 (2011).
http://dx.doi.org/10.1063/1.3648108
25.
25. P. W. Anderson, Phil. Mag. B 52, 505509 (1985).
http://dx.doi.org/10.1080/13642818508240619
26.
26. S. Karbasi, C. R. Mirr, R. J. Frazier, P. G. Yarandi, K. W. Koch, and A. Mafi, “Detailed investigation of the impact of the fiber design parameters on the transverse Anderson localization of light in disordered optical fibers,” Optics Express 20, 18692 (2012).
http://dx.doi.org/10.1364/OE.20.018692
27.
27. T. Schwartz, G. Bartal, S. Fishman, and M. Segev, Nature (London) 446, 52 (2007).
http://dx.doi.org/10.1038/nature05623
28.
28. C. Conti and A. Fratalocchi, Nature Physics 14, 794 (2008).
http://dx.doi.org/10.1038/nphys1035
29.
29. L. Martin, G. D. Giuseppe, A. Perez-Leija, R. Keil, F. Dreisow, M. Heinrich, S. Nolte, A. Szameit, A. F. Abouraddy, D. N. Christodoulides, and B. E. A. Saleh, Optics Express 19, 13636 (2011).
http://dx.doi.org/10.1364/OE.19.013636
30.
30. B. A. van Tiggelen, Phys. Rev. Lett. 75, 422 (1995).
http://dx.doi.org/10.1103/PhysRevLett.75.422
31.
31. A. Sparenberg, G. L. J. A. Rikken, and B. A. van Tiggelen, Phys. Rev. Lett. 79, 757 (1997).
http://dx.doi.org/10.1103/PhysRevLett.79.757
32.
32. F. Scheffold and G. Maret, Phys. Rev. Lett. 81, 5800 (1998).
http://dx.doi.org/10.1103/PhysRevLett.81.5800
33.
33. D. S. Wiersma, M. Colocci, R. Righini, and F. Aliev, Phys. Rev. B 64, 144208 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.144208
34.
34. G. Fujii, T. Matsumoto, T. Takahashi, and T. Ueta, “Study on transition from photonic-crystal laser to random laser,” Optics Express 20, 7300 (2012).
http://dx.doi.org/10.1364/OE.20.007300
35.
35. A. C. T. Thijssen, M. J. Cryan, J. G. Rarity, and R. Oulton, “Transfer of arbitrary quantum emitter states to near-field photon superpositions in nanocavities,” Optics Express 20, 22412 (2012).
http://dx.doi.org/10.1364/OE.20.022412
36.
36. A. Taflove and S. C. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2000).
37.
37. L. Y. Cao, B. Nabet, and J. E. Spanier, Phys. Rev. Lett. 96, 157402 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.157402
38.
38. Y. B. Wu, Y. F. Wang, and X. W. Cao, J. Appl. Phys. 105, 023103 (2009).
http://dx.doi.org/10.1063/1.3068175
39.
39. Y. B. Wu, Y. F. Wang, and X. W. Cao, J. Appl. Phys. 106, 053106 (2009).
http://dx.doi.org/10.1063/1.3204966
40.
40. D. E. Aspnes and A. A. Studna, Phys. Rev. B 27, 985 (1983).
http://dx.doi.org/10.1103/PhysRevB.27.985
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/11/10.1063/1.4830280
Loading
/content/aip/journal/adva/3/11/10.1063/1.4830280
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/3/11/10.1063/1.4830280
2013-11-07
2016-12-04

Abstract

The light localization effects in silicon photonic crystal cavities at different disorder degrees have been studied using the finite difference time domain (FDTD) method in this paper. Numerical results showed that localization occurs and enhancement can be gained in the region of the cavity under certain conditions. The stabilities of the localization effects due to the structural perturbations have been investigated too. Detailed studies showed that when the degree of structural disorder is small(about 10%), the localization effects are stable, the maximum enhancement factor can reach 16.5 for incident wavelength of 785 nm and 23 for 850 nm in the cavity, with the degree of disorder about 8%. The equivalent diameter of the localized spot is almost constant at different disorder degrees, approximating to , which turned out to be independent on the structural perturbation.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/11/1.4830280.html;jsessionid=I61nEUYWTLvVo8KplhotDYD5.x-aip-live-02?itemId=/content/aip/journal/adva/3/11/10.1063/1.4830280&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/3/11/10.1063/1.4830280&pageURL=http://scitation.aip.org/content/aip/journal/adva/3/11/10.1063/1.4830280'
Right1,Right2,Right3,