Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. C. F. Schmidt, M. Burmann, G. Isenberg, and E. Sackmann, Macromolecules 22, 3638 (1989).
2. J. D. Jones and K. Luby Phelps, Biophys. J. 71, 2742 (1996).
3. B. Schnurr, F. Gittes, F. C. MacKintosh, and C. F. Schmidt, Macromolecules 30, 7781 (1997).
4. F. Amblard, A. C. Maggs, B. Yurke, A. N. Pargellis, and S. Leibler, Phys. Rev. Lett. 77, 4470 (1996).
5. J. McGrath, J. Hartwig, and S. Kuo, Biophys. J. 79, 3258 (2000).
6. T. Gisler, and D. A. Weitz, Phys. Rev. Lett. 82, 1606 (1999).
7. T. G. Mason, and D. A. Weitz, Phys. Rev. Lett. 74, 1250 (1995).
8. T. G. Mason, K. Ganesan, J. H. van Zanten, D. Wirtz, and S. C. Kuo, Phys. Rev. Lett. 79, 3282 (1997).
9. F. G. Schmidt, B. Hinner, and E. Sackmann, Phys. Rev. E. 61, 5646 (2000).
10. A. S. Verkman, Trends Biochem. Sci. 27, 27 (2002).
11. A. P. Minton, J. Bio. Chem. 276, 10577 (2001).
12. D. S. Clague, and R. J. Phillips, Phys. Fluids 8, 1720 (1996).
13. I. Y. Wong, M. L. Gardel, D. R. Reichman, Eric R. Weeks, M. T. Valentine, A. R. Bausch, and D. A. Weitz, Phys. Rev. Lett. 92, 178101 (2004).
14. A. Dvoretzky and P. Erdos, Proceedings of the Second Berkeley Symposium (University of California Press, Berkeley, 1951).
15. G. H. Vineyard, J. Math. Phys. 4, 1191 (1963).
16. A. Blumen, J. Klafter, and G. Zumofen, Optical Spectroscopy of Glasses, edited by I. Zschokke (Reidel, New York, 1986).
17. R. Czech, J. Chem. Phys. 91, 2498 (1989).
18. P. Bordewijk, Chem. Phys. Lett. 32, 592 (1975).
19. C. A. Condat, Phys. Rev. A. 41, 3365 (1990).
20. R. J. Beeler and J. A. Delaney, Phys. Rev. A. 130, 926 (1963).
21. H. B. Rosenstock, Phys. Rev. 187, 1166 (1969).
22. R. D. Wieting, M. D. Fayer, and D. D. Dlott, J. Chem. Phys. 69, 1996 (1978).
23. E. W. Montroll, Stochastic Processes in Applied Mathematics XVI (American Mathematical Society, Providence, RI, 1964).
24. E. W. Montroll and G. H. Weiss, J. Math. Phys. 6, 167 (1965).
25. N. C. Jain and S. Orey, Isr. J. Math. 6, 373 (1968).
26. N. C. Jain and W. E. Pruitt, Proceedings of the Sixth Berkeley Symposium (University of California Press, Berkeley, 1971).
27. F. S. Henyey and V. Seshadri, J. Chem. Phys. 76, 5330 (1982).
28. D. C. Torney, J. Stat. Phys. 44, 49 (1986).
29. S. Alexander, J. Bernasconi, and R. Orbach, Phys. Rev. B 17, 4311 (1978).
30. K. Heinrichs, Phys. Rev. B 22, 3093 (1982).
31. G. H. Weiss and S. Havlin, J. Stat. Phys. 37, 17 (1984).
32. J. W. Haus and K. W. Kehr, Phys. Rep. 150, 263 (1987).
33. M. V. Smoluchowski, J. Phys. Chem. 29, 129 (1917).
34. S. A. Rice, Diffusion – Controlled Reactions (Elsevier, Amsterdam, 1985).
35. J. G. Skellam, Biometrika 38, 196 (1951).
36. J. G. Skellam, Biometrika 39, 346 (1952).
37. E. C. Pielou, An Introduction to Mathematical Ecology (Wiley-Interscience, New York, 1969);
37.R. M. May, Stability and Complexity in Model Ecosystems (Princeton University Press, Princeton, NJ, 1973).
38. L. Edelstein-Keshet, Mathematical Models in Biology (Random House, New York, 1988).
39. G. Mussardo, Statistical Field Theory: An Introduction to Exactly Solved Models in Statistical Physics (Oxford University Press, 2010).
40. C. W. Gardiner, Handbook of Stochastic Methods for Physics, Chemistry and Natural Sciences (Springer-Verlag, New York, 1996).
41. N. Arfin and H. B. Bohidar, J. Phys. Chem. B 116, 13192 (2012).
42.See supplementary material to this article at which supports the assumption that the uniformly distributed matrix is in minimum energy configuration and for typical probe trajectories. [Supplementary Material]
43. H. Larralde, P. Trunfio, S. Havlin, H. E. Stanley, and G. H. Weiss, Phys. Rev. A. 45, 7128 (1992).

Data & Media loading...


Article metrics loading...



The physical mechanism leading to the formation of large intermolecular DNA-protein complexes has been studied. Our study aims to explain the occurrence of fast coacervation dynamics at the charge neutralization point, followed by the appearance of smaller complexes and slower coacervation dynamics as the complex experiences overcharging. Furthermore, the electrostatic potential and probe mobility was investigated to mimic the transport of DNA / DNA-protein complex in a DNA-protein complex coacervate medium [N. Arfin and H. B. Bohidar, J. Phys. Chem. B116, 13192 (2012)] by assigning neutral, negative, or positive charge to the probe particle. The mobility of the neutral probe was maximal at low matrix concentrations and showed random walk behavior, while its mobility ceased at the jamming concentration of c = 0.6, showing sub-diffusion and trapped dynamics. The positively charged probe showed sub-diffusive random walk followed by trapped dynamics, while the negatively charged probe showed trapping with occasional hopping dynamics at much lower concentrations. Sub-diffusion of the probe was observed in all cases under consideration, where the electrostatic interaction was used exclusively as the dominant force involved in the dynamics. For neutral and positive probes, the mean square displacement ⟨ 2⟩ exhibits a scaling with time as ⟨ 2⟩ ∼ α, distinguishing random walk and trapped dynamics at α = 0.64 ± 0.04 at c = 0.12 and c = 0.6, respectively. In addition, the same scaling factors with the exponent β = 0.64 ± 0.04 can be used to distinguish random walk and trapped dynamics for the neutral and positive probes using the relation between the number of distinct sites visited by the probe, S(t), which follows the scaling, () ∼ β/ln (). Our results established the occurrence of a hierarchy of diffusion dynamics experienced by a probe in a dense medium that is either charged or neutral.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd