1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Schottky barrier height measurements of Cu/Si(001), Ag/Si(001), and Au/Si(001) interfaces utilizing ballistic electron emission microscopy and ballistic hole emission microscopy
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/3/11/10.1063/1.4831756
1.
1. S. Davis, Power Electronics Technology, pp. 3638 (2011).
2.
2. X. Li, H. Zhu, K. Wang, A. Cao, J. Wei, C. Li, Y. Jia, Z. Li, X. Li, and D. Wu, Adv. Mater 22, 2743 (2010).
http://dx.doi.org/10.1002/adma.200904383
3.
3. S. M. Sze, Physics of Semiconductor Devices (John Wiley & Sons, Inc., New York, 1981).
4.
4. C. Detavernier, R. L. Van Meirhaeghe, R. Donaton, K. Maex, and F. Cardon, J. Appl. Phys. 84, 3226 (1998).
http://dx.doi.org/10.1063/1.368475
5.
5. R. T. Tung, Mater. Sci. Eng. R Rep. 35, 1 (2001).
http://dx.doi.org/10.1016/S0927-796X(01)00037-7
6.
6. R. T. Tung, Phys. Rev. B 45, 509 (1992).
http://dx.doi.org/10.1103/PhysRevB.45.13509
7.
7. L. D. Bell and W. J. Kaiser, Phys. Rev. Lett. 61, 2368 (1988).
http://dx.doi.org/10.1103/PhysRevLett.61.2368
8.
8. W. J. Kaiser and L. D. Bell, Phys. Rev. Lett. 60, 1406 (1988).
http://dx.doi.org/10.1103/PhysRevLett.60.1406
9.
9. M. H. Hecht, L. D. Bell, W. J. Kaiser, and L. C. Davis, Phys. Rev. B 42, 7663 (1990).
http://dx.doi.org/10.1103/PhysRevB.42.7663
10.
10. M. K. Weilmeier, W. H. Rippard, and R. A. Buhrman, Phys. Rev. B 59, R2521 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.R2521
11.
11. M. K. Weilmeier, W. H. Rippard, and R. A. Buhrman, Phys. Rev. B 61, 7161 (2000).
http://dx.doi.org/10.1103/PhysRevB.61.7161
12.
12. W. J. Kaiser, M. H. Hecht, R. W. Fathauer, L. D. Bell, E. Y. Lee, and L. C. Davis, Phys. Rev. B 44, 6546 (1991).
http://dx.doi.org/10.1103/PhysRevB.44.6546
13.
13. H. Sirringhaus, T. Meyer, E. Y. Lee, and H. von Känel, Phys. Rev. B 53, 15944 (1996).
http://dx.doi.org/10.1103/PhysRevB.53.15944
14.
14. C. A. Bobisch, A. Bannani, Y. M. Koroteev, G. Bihlmayer, E. V. Chulkov, and R. Moller, Phys. Rev. Lett. 102, 136807 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.136807
15.
15. C. A. Ventrice Jr., V. P. LaBella, G. Ramaswamy, H. P. Yu, and L. J. Schowalter, Phys. Rev. B 53, 3952 (1996).
http://dx.doi.org/10.1103/PhysRevB.53.3952
16.
16. I. Sitnitsky, J. J. Garramone, J. Abel, P. Xu, S. D. Barber, M. L. Ackerman, J. K. Schoelz, P. M. Thibado, and V. P. LaBella, J. Vac. Sci. Technol. B 30, 04E110 (2012).
http://dx.doi.org/10.1116/1.4734307
17.
17. J. J. Garramone, J. R. Abel, I. L. Sitnitsky, L. Zhao, I. Appelbaum, and V. P. LaBella, Appl. Phys. Lett. 96, 062105 (2010).
http://dx.doi.org/10.1063/1.3299712
18.
18. H. J. Im, B. Kaczer, J. P. Pelz, and W. J. Choyke, Appl. Phys. Lett. 72, 839 (1998).
http://dx.doi.org/10.1063/1.120910
19.
19. C. Tivarus, J. P. Pelz, M. K. Hudait, and S. A. Ringel, Phys. Rev. Lett. 94, 206803 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.206803
20.
20. T. Banerjee, E. Haq, M. Siekman, J. Lodder, and R. Jansen, IEEE Trans. Magn. 41, 2642 (2005).
http://dx.doi.org/10.1109/TMAG.2005.854738
21.
21. J. J. Garramone, J. R. Abel, S. Barraza-Lopez, and V. P. LaBella, Appl. Phys. Lett. 100, 252102 (2012).
http://dx.doi.org/10.1063/1.4729622
22.
22. J. J. Garramone, J. R. Abel, I. L. Sitnitsky, and V. P. LaBella, J. Vac. Sci. Technol. A 28, 643 (2010).
http://dx.doi.org/10.1116/1.3397795
23.
23. J. J. Garramone, J. R. Abel, I. L. Sitnitsky, R. L. Moore, and V. P. LaBella, J. Vac. Sci. Technol. B 27, 2044 (2009).
http://dx.doi.org/10.1116/1.3136761
24.
24. A. J. Stollenwerk, M. R. Krause, D. H. Idell, R. Moore, and V. P. LaBella, J. Vac. Sci. Technol. B 24, 2009 (2006).
http://dx.doi.org/10.1116/1.2213264
25.
25. A. Stollenwerk, M. Krause, R. Moore, and V. P. LaBella, J. Vac. Sci. Technol. A 24, 1610 (2006).
http://dx.doi.org/10.1116/1.2206195
26.
26. H. L. Qin, K. E. J. Goh, M. Bosman, K. L. Pey, and C. Troadec, J. Appl. Phys. 111, 013701 (2012).
http://dx.doi.org/10.1063/1.3672698
27.
27. S. Forment, R. L. Van Meirhaeghe, A. D. Vrieze, K. Strubbe, and W. P. Gomes, Semicond. Sci. Technol. 16, 975 (2001).
http://dx.doi.org/10.1088/0268-1242/16/12/305
28.
28. L. D. Bell, W. J. Kaiser, M. H. Hecht, and L. C. Davis, J. Vac. Sci. Technol. B 9, 594 (1991).
http://dx.doi.org/10.1116/1.585466
29.
29. J. P. Che, Y. L. Pelz, Appl. Phys. Lett. 96, 242106 (2010).
http://dx.doi.org/10.1063/1.3453866
30.
30. M. Krause, A. Stollenwerk, C. Awo-Affouda, B. Maclean, and V. P. LaBella, J. Vac. Sci. Technol. B 23, 1684 (2005).
http://dx.doi.org/10.1116/1.1941167
31.
31. W. Bludau, A. Onton, and W. Heinke, J. Appl. Phys. 45, 1846 (1974).
http://dx.doi.org/10.1063/1.1663501
32.
32. M. Prietsch, Phys. Rep. 253, 163 (1995).
http://dx.doi.org/10.1016/0370-1573(94)00082-E
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/11/10.1063/1.4831756
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

BEEM and BHEM wiring schematic.

Image of FIG. 2.

Click to view

FIG. 2.

Band diagrams for (a) forward BEEM, (b) forward BHEM, (c) reverse BEEM, and (d) reverse BHEM.

Image of FIG. 3.

Click to view

FIG. 3.

Current-voltage (IV) data for Cu, Ag, and Au Schottky diodes for both -type (a)–(c) and -type (d)–(f) Si(001) taken at 80 K.

Image of FIG. 4.

Click to view

FIG. 4.

(a) Forward BEEM spectra of Cu on -type Si (001). (b) Spectra linearized to BK ( = 2) model showing the SBH. (c) Spectra linearized to PL ( = 5/2) model showing the SBH.

Image of FIG. 5.

Click to view

FIG. 5.

(a) Forward BEEM spectra of Ag on -type Si (001). (b) Spectra linearized to BK ( = 2) model showing the SBH. (c) Spectra linearized to PL ( = 5/2) model showing the SBH.

Image of FIG. 6.

Click to view

FIG. 6.

(a) Forward BEEM spectra of Au on -type Si (001). (b) Spectra linearized to BK ( = 2) model showing the SBH. (c) Spectra linearized to PL ( = 5/2) model showing the SBH.

Image of FIG. 7.

Click to view

FIG. 7.

(a) Forward BHEM spectra of Cu on -type Si (001). (b) Spectra linearized to BK ( = 2) model showing the SBH. (c) Spectra linearized to PL ( = 5/2) model showing the SBH.

Image of FIG. 8.

Click to view

FIG. 8.

(a) Forward BHEM spectra of Ag on -type Si (001). (b) Spectra linearized to BK ( = 2) model showing the SBH. (c) Spectra linearized to PL ( = 5/2) model showing the SBH.

Image of FIG. 9.

Click to view

FIG. 9.

(a) Forward BHEM spectra of Au on -type Si (001). (b) Spectra linearized to BK ( = 2) model showing the SBH. (c) Spectra linearized to PL ( = 5/2) model showing the SBH.

Image of FIG. 10.

Click to view

FIG. 10.

(a) Reverse BEEM spectra of Cu on -type Si (001). (b) Spectra linearized to BK ( = 4) model showing the SBH. (c) Spectra linearized to PL ( = 9/2) model showing the SBH.

Image of FIG. 11.

Click to view

FIG. 11.

(a) Reverse BEEM spectra of Ag on -type Si (001). (b) Spectra linearized to BK ( = 4) model showing the SBH. (c) Spectra linearized to PL ( = 9/2) model showing the SBH.

Image of FIG. 12.

Click to view

FIG. 12.

(a) Reverse BEEM spectra of Au on -type Si (001). (b) Spectra linearized to BK ( = 4) model showing the SBH. (c) Spectra linearized to PL ( = 9/2) model showing the SBH.

Image of FIG. 13.

Click to view

FIG. 13.

(a) Reverse BHEM spectra of Cu on -type Si (001). (b) Spectra linearized to BK ( = 4) model showing the SBH. (c) Spectra linearized to PL ( = 9/2) model showing the SBH.

Image of FIG. 14.

Click to view

FIG. 14.

(a) Reverse BHEM spectra of Ag on -type Si (001). (b) Spectra linearized to BK ( = 4) model showing the SBH. (c) Spectra linearized to PL ( = 9/2) model showing the SBH.

Image of FIG. 15.

Click to view

FIG. 15.

(a) Reverse BHEM spectra of Au on -type Si (001). (b) Spectra linearized to BK ( = 4) model showing the SBH. (c) Spectra linearized to PL ( = 9/2) model showing the SBH.

Tables

Generic image for table

Click to view

Table I.

Barrier heights for both -type and -type substrates as measured by forward BEEM and BHEM and their sums. The uncertainty is 0.02 eV, which was computed from the linear regression. For reference the E of Si is 1.1669 eV.

Generic image for table

Click to view

Table II.

Barrier heights for both -type and -type substrates as measured by reverse BEEM and BHEM and their sums. The uncertainty is 0.02 eV, which was computed from the linear regression. For reference the E of Si is 1.1669 eV.

Loading

Article metrics loading...

/content/aip/journal/adva/3/11/10.1063/1.4831756
2013-11-11
2014-04-20

Abstract

The Schottky barrier heights of both and doped Cu/Si(001), Ag/Si(001), and Au/Si(001) diodes were measured using ballistic electron emission microscopy and ballistic hole emission microscopy (BHEM), respectively. Measurements using both forward and reverse ballistic electron emission microscopy (BEEM) and (BHEM) injection conditions were performed. The Schottky barrier heights were found by fitting to a linearization of the power law form of the Bell-Kaiser BEEM model. The sum of the -type and -type barrier heights are in good agreement with the band gap of silicon and independent of the metal utilized. The Schottky barrier heights are found to be below the region of best fit for the power law form of the BK model, demonstrating its region of validity.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/11/1.4831756.html;jsessionid=982q36dgk3p4e.x-aip-live-03?itemId=/content/aip/journal/adva/3/11/10.1063/1.4831756&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Schottky barrier height measurements of Cu/Si(001), Ag/Si(001), and Au/Si(001) interfaces utilizing ballistic electron emission microscopy and ballistic hole emission microscopy
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/11/10.1063/1.4831756
10.1063/1.4831756
SEARCH_EXPAND_ITEM