Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. Z. Fan, D. Wang, P.-C. Chang, W.-Y. Tseng, and J. G. Lu, Appl. Phys. Lett. 85, 5923 (2004).
2. C. Wang, K. Yu, L. Li, Q. Li, and Z. Zhu, Appl. Phys. A 90, 739 (2008).
3. H. T. Wang, B. S. Kang, F. Ren, L. C. Tien, P. W. Sadik, D. P. Norton, S. J. Pearton, and J. Lin, Appl. Phys. Lett. 86, 243503 (2005).
4. Q. Wan, C. L. Lin, X. B. Yu, and T. H. Wang, Appl. Phys. Lett. 84, 124 (2004).
5. J. C. Johnson, K. P. Knutsen, H. Yan, M. Law, Y. Zhang, P. Yang, and R. J. Saykally, Nano Lett. 4, 197 (2004).
6. A. Umar, S. H. Kim, Y.-S. Lee, K. S. Nahm, and Y. B. Hahn, J. Cryst. Growth 282, 131 (2005).
7. T. Rakshit, S. Mandal, P. Mishra, A. Dhar, I. Manna, and S. K. Ray, J. Nanosci. Nanotechnol. 12, 308 (2012).
8. X. Y. Kong, Y. Ding, R. Yang, and Z. L. Wang, Science 303, 1348 (2004).
9. C. H. Jung, D. J. Kim, Y. K. Kang, and D. H. Yoon, Thin Solid Films 517, 4078 (2009).
10. E. Pál, V. Hornok, A. Oszkó, and I. Dékány, Coll. Surf. A: Physicochem. Eng. Aspects 340, 1 (2009).
11. C. H. Ahn, S. K. Mohanta, B. H. Kong, and H. K. Cho, J. Phys. D: Appl. Phys. 42, 115106 (2009).
12. P. K. Sharma, R. K. Dutta, A. C. Pandey, S. Layek, and H. C. Verma, J. Magn. Magn. Mater. 321, 2587 (2009).
13. K. Jayanthi, S. Chawla, K. N. Sood, M. Chhibara, and S. Singh, Appl. Surf. Sci. 255, 5869 (2009).
14. G. Shen, J. H. Cho, J. K. Yoo, G.-C. Yi, and C. J. Lee, J. Phys. Chem. B 109, 5491 (2005).
15. P. X. Gao, Y. Ding, and Z. L. Wang, Nano Lett. 3, 1315 (2003).
16. Y. Ding, P. X. Gao, and Z. L. Wang, J. Am. Chem. Soc. 126, 2066 (2004).
17. S. Y. Bae, C. W. Na, J. H. Kang, and J. Park, J. Phys. Chem. B 109, 2526 (2005).
18. S. Mandal, A. Dhar, and S. K. Ray, J Appl Phys. 105, 033513 (2009).
19. H. S. Kang, J. S. Kang, J. W. Kim, and S. Y. Lee, J. Appl. Phys. 95, 1246 (2004).
20. T. Gao, Y. Huang, and T. Wang, J. Phys.: Condens. Matter 16, 1115 (2004).
21. B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, and A. V. Rodina, Phys. Status Solidi (b) 241, 231 (2004).
22. A. Teke, Ü. Özgür, S. Doğan, X. Gu, and H. Morkoç, Phys. Rev. B 70, 195207 (2004).
23. S. S. Kurbanov and T. W. Kang, J. Lumin. 130, 767 (2010)
24. S. S. Kurbanov, G. N. Panin, and T. W. Kang, Appl. Phys. Lett. 95, 211902 (2009).
25. D. C. Reynolds, D. C. Look, B. Jogai, R. L. Jones, C. W. Litton, W. Harsch, and G. Cantwell, J. Lumin. 82, 173 (1999).
26. P. Lautenschlager, M. Garriga, S. Logothetidis, and M. Cardona, Phys. Rev. B 35, 9174 (1987).
27. L. Wang and N. C. Giles, J. Appl. Phys. 94, 973 (2003).
28. S. Dutta, S. Chattopadhyay, A. Sarkar, M. Chakrabarti, D. Sanyal, and D. Jana, Prog. Mater. Sci. 54, 89 (2009).
29. C. G. Van de Walle and J. Neugebaur, J Appl Phys. 95, 3851 (2004).
30. J. Huh, G.-T. Kim, J. S. Lee, and S. Kim, Appl. Phys. Lett. 93, 042111 (2008).

Data & Media loading...


Article metrics loading...



Pure and Sn doped ZnO nanostructures have been grown on SiO/Si substrates by vapor-solid technique without using any catalysts. It has been found that the morphology of the nanostructures depend strongly on the growth temperature and doping concentration. By proper tuning of the growth temperature, morphology of pure ZnO can be changed from tetrapods to multipods. On the other hand, by varying the doping concentration of Sn in ZnO, the morphology can be tuned from tetrapods to flower-like multipods to nanowires. X-ray diffraction pattern reveals that the nanostructures have a preferred (0002) growth orientation, and they are tensile strained with the increase of Sn doping in ZnO. Temperature-dependent photoluminescence characteristics of these nanostructures have been investigated in the range from 10 to 300 K. Pure ZnO tetrapods exhibited less defect state emissions than that of pure ZnO multipods. The defect emission is reduced with low concentration of Sn doping, but again increases at higher concentration of doping because of increased defects. Transport properties of pure and Sn doped ZnO tetrapods have been studied using complex-plane impedance spectroscopy. The contribution from the arms and junctions of a tetrapod could be distinguished. Sn doped ZnO samples showed lower conductivity but higher relaxation time than that of pure ZnO tetrapods.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd