1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Shape controlled Sn doped ZnO nanostructures for tunable optical emission and transport properties
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/3/11/10.1063/1.4832219
1.
1. Z. Fan, D. Wang, P.-C. Chang, W.-Y. Tseng, and J. G. Lu, Appl. Phys. Lett. 85, 5923 (2004).
http://dx.doi.org/10.1063/1.1836870
2.
2. C. Wang, K. Yu, L. Li, Q. Li, and Z. Zhu, Appl. Phys. A 90, 739 (2008).
http://dx.doi.org/10.1007/s00339-007-4348-3
3.
3. H. T. Wang, B. S. Kang, F. Ren, L. C. Tien, P. W. Sadik, D. P. Norton, S. J. Pearton, and J. Lin, Appl. Phys. Lett. 86, 243503 (2005).
http://dx.doi.org/10.1063/1.1949707
4.
4. Q. Wan, C. L. Lin, X. B. Yu, and T. H. Wang, Appl. Phys. Lett. 84, 124 (2004).
http://dx.doi.org/10.1063/1.1637939
5.
5. J. C. Johnson, K. P. Knutsen, H. Yan, M. Law, Y. Zhang, P. Yang, and R. J. Saykally, Nano Lett. 4, 197 (2004).
http://dx.doi.org/10.1021/nl034780w
6.
6. A. Umar, S. H. Kim, Y.-S. Lee, K. S. Nahm, and Y. B. Hahn, J. Cryst. Growth 282, 131 (2005).
http://dx.doi.org/10.1016/j.jcrysgro.2005.04.095
7.
7. T. Rakshit, S. Mandal, P. Mishra, A. Dhar, I. Manna, and S. K. Ray, J. Nanosci. Nanotechnol. 12, 308 (2012).
http://dx.doi.org/10.1166/jnn.2012.5134
8.
8. X. Y. Kong, Y. Ding, R. Yang, and Z. L. Wang, Science 303, 1348 (2004).
http://dx.doi.org/10.1126/science.1092356
9.
9. C. H. Jung, D. J. Kim, Y. K. Kang, and D. H. Yoon, Thin Solid Films 517, 4078 (2009).
http://dx.doi.org/10.1016/j.tsf.2009.01.166
10.
10. E. Pál, V. Hornok, A. Oszkó, and I. Dékány, Coll. Surf. A: Physicochem. Eng. Aspects 340, 1 (2009).
http://dx.doi.org/10.1016/j.colsurfa.2009.01.020
11.
11. C. H. Ahn, S. K. Mohanta, B. H. Kong, and H. K. Cho, J. Phys. D: Appl. Phys. 42, 115106 (2009).
http://dx.doi.org/10.1088/0022-3727/42/11/115106
12.
12. P. K. Sharma, R. K. Dutta, A. C. Pandey, S. Layek, and H. C. Verma, J. Magn. Magn. Mater. 321, 2587 (2009).
http://dx.doi.org/10.1016/j.jmmm.2009.03.043
13.
13. K. Jayanthi, S. Chawla, K. N. Sood, M. Chhibara, and S. Singh, Appl. Surf. Sci. 255, 5869 (2009).
http://dx.doi.org/10.1016/j.apsusc.2009.01.032
14.
14. G. Shen, J. H. Cho, J. K. Yoo, G.-C. Yi, and C. J. Lee, J. Phys. Chem. B 109, 5491 (2005).
http://dx.doi.org/10.1021/jp045237m
15.
15. P. X. Gao, Y. Ding, and Z. L. Wang, Nano Lett. 3, 1315 (2003).
http://dx.doi.org/10.1021/nl034548q
16.
16. Y. Ding, P. X. Gao, and Z. L. Wang, J. Am. Chem. Soc. 126, 2066 (2004).
http://dx.doi.org/10.1021/ja039354r
17.
17. S. Y. Bae, C. W. Na, J. H. Kang, and J. Park, J. Phys. Chem. B 109, 2526 (2005).
http://dx.doi.org/10.1021/jp0458708
18.
18. S. Mandal, A. Dhar, and S. K. Ray, J Appl Phys. 105, 033513 (2009).
http://dx.doi.org/10.1063/1.3074094
19.
19. H. S. Kang, J. S. Kang, J. W. Kim, and S. Y. Lee, J. Appl. Phys. 95, 1246 (2004).
http://dx.doi.org/10.1063/1.1633343
20.
20. T. Gao, Y. Huang, and T. Wang, J. Phys.: Condens. Matter 16, 1115 (2004).
http://dx.doi.org/10.1088/0953-8984/16/7/011
21.
21. B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, and A. V. Rodina, Phys. Status Solidi (b) 241, 231 (2004).
http://dx.doi.org/10.1002/pssb.200301962
22.
22. A. Teke, Ü. Özgür, S. Doğan, X. Gu, and H. Morkoç, Phys. Rev. B 70, 195207 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.195207
23.
23. S. S. Kurbanov and T. W. Kang, J. Lumin. 130, 767 (2010)
http://dx.doi.org/10.1016/j.jlumin.2009.11.030
24.
24. S. S. Kurbanov, G. N. Panin, and T. W. Kang, Appl. Phys. Lett. 95, 211902 (2009).
http://dx.doi.org/10.1063/1.3264084
25.
25. D. C. Reynolds, D. C. Look, B. Jogai, R. L. Jones, C. W. Litton, W. Harsch, and G. Cantwell, J. Lumin. 82, 173 (1999).
http://dx.doi.org/10.1016/S0022-2313(99)00020-4
26.
26. P. Lautenschlager, M. Garriga, S. Logothetidis, and M. Cardona, Phys. Rev. B 35, 9174 (1987).
http://dx.doi.org/10.1103/PhysRevB.35.9174
27.
27. L. Wang and N. C. Giles, J. Appl. Phys. 94, 973 (2003).
http://dx.doi.org/10.1063/1.1586977
28.
28. S. Dutta, S. Chattopadhyay, A. Sarkar, M. Chakrabarti, D. Sanyal, and D. Jana, Prog. Mater. Sci. 54, 89 (2009).
http://dx.doi.org/10.1016/j.pmatsci.2008.07.002
29.
29. C. G. Van de Walle and J. Neugebaur, J Appl Phys. 95, 3851 (2004).
http://dx.doi.org/10.1063/1.1682673
30.
30. J. Huh, G.-T. Kim, J. S. Lee, and S. Kim, Appl. Phys. Lett. 93, 042111 (2008).
http://dx.doi.org/10.1063/1.2963483
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/11/10.1063/1.4832219
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

FESEM micrographs of pure ZnO nanostructures grown for 30 min. at different growth temperature of (a) 800 °C and (b) 900 °C. Inset shows the magnified view of the micrographs.

Image of FIG. 2.

Click to view

FIG. 2.

(a) Grazing incidence XRD patterns, and (b) photoluminescence spectra at 10 K, of pure ZnO nanostructures.

Image of FIG. 3.

Click to view

FIG. 3.

FESEM micrographs of Sn doped ZnO nanostructures grown at 800 °C for 30 min., for Sn doping concentrations of (a) 3 at.%, (b) 5 at.%, (c) 10 at.%, and (d) 16 at.%.

Image of FIG. 4.

Click to view

FIG. 4.

(a) Grazing incidence XRD patterns of (A) pure ZnO tetrapods, (B) SZO3 tetrapods, (C) SZO5 tetrapods, (D) SZO10 flower-like multipods, and (E) SZO16 nanowires. (b) Showing only the (0002) peak of the XRD pattern. (c) Variation of full-width-at-half-maximum of the (0002) peak with Sn content in ZnO.

Image of FIG. 5.

Click to view

FIG. 5.

Photoluminescence spectra at 10 K of (A) pure ZnO tetrapods, (B) SZO3 tetrapods, (C) SZO5 tetrapods, (D) SZO10 flower-like multipods, and (E) SZO16 nanowires, showing (a) in full range of 2-3.55 eV, (b) only the excitonic emission bands, and (c) only the free excitonic and excitons bound to neutral donor peaks.

Image of FIG. 6.

Click to view

FIG. 6.

Temperature dependent photoluminescence spectra of (a) pure ZnO tetrapods, (b) SZO3 tetrapods, (c) SZO5 tetrapods, (d) SZO10 flower-like multipods, and (e) SZO16 nanowires. 300 K graph (solid line) has been fitted with Lorentzian curves (dash lines). The sums of the three Lorentzian curves are indicated by open circles. (f) Variation in free excitonic peak, peak due to excitons bound to defect states and its LO phonon replica, with temperature of pure ZnO tetrapods. Free excitonic peak have been fitted with Bose-Einstein-type expression (solid line).

Image of FIG. 7.

Click to view

FIG. 7.

(a) Schematic diagram of the fabricated device with Al contact on the top. Magnified view of the FESEM micrographs of (b) pure ZnO tetrapods, (c) SZO3 tetrapods, and (d) SZO5 tetrapods.

Image of FIG. 8.

Click to view

FIG. 8.

Complex-plane impedance spectra for (a) pure ZnO tetrapods, (b) SZO3 tetrapods, and (c) SZO5 tetrapods. Inset shows the semicircle in the higher frequency region. Open symbols are experimental data and solid curves are the corresponding fit. (d) Proposed equivalent circuit.

Image of FIG. 9.

Click to view

FIG. 9.

Variations of (a) resistance of semicircle-1, (b) resistance of semicircle-2, (c) relaxation time of the junction, and (d) relaxation time of the arm, with the dc bias voltage.

Tables

Generic image for table

Click to view

Table I.

Einstein temperature of pure and Sn doped ZnO nanostructures.

Loading

Article metrics loading...

/content/aip/journal/adva/3/11/10.1063/1.4832219
2013-11-13
2014-04-16

Abstract

Pure and Sn doped ZnO nanostructures have been grown on SiO/Si substrates by vapor-solid technique without using any catalysts. It has been found that the morphology of the nanostructures depend strongly on the growth temperature and doping concentration. By proper tuning of the growth temperature, morphology of pure ZnO can be changed from tetrapods to multipods. On the other hand, by varying the doping concentration of Sn in ZnO, the morphology can be tuned from tetrapods to flower-like multipods to nanowires. X-ray diffraction pattern reveals that the nanostructures have a preferred (0002) growth orientation, and they are tensile strained with the increase of Sn doping in ZnO. Temperature-dependent photoluminescence characteristics of these nanostructures have been investigated in the range from 10 to 300 K. Pure ZnO tetrapods exhibited less defect state emissions than that of pure ZnO multipods. The defect emission is reduced with low concentration of Sn doping, but again increases at higher concentration of doping because of increased defects. Transport properties of pure and Sn doped ZnO tetrapods have been studied using complex-plane impedance spectroscopy. The contribution from the arms and junctions of a tetrapod could be distinguished. Sn doped ZnO samples showed lower conductivity but higher relaxation time than that of pure ZnO tetrapods.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/11/1.4832219.html;jsessionid=ch4emsgilc2qg.x-aip-live-01?itemId=/content/aip/journal/adva/3/11/10.1063/1.4832219&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Shape controlled Sn doped ZnO nanostructures for tunable optical emission and transport properties
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/11/10.1063/1.4832219
10.1063/1.4832219
SEARCH_EXPAND_ITEM