Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/3/11/10.1063/1.4834115
1.
1. P. M. Varangis, A. Gavrielides, T. Erneux, V. Kovanis, and L. F. Lester, “Frequency entrainment in optically injected semiconductor lasers,” Phys. Rev. Lett. 78, 23532356 (1997).
http://dx.doi.org/10.1103/PhysRevLett.78.2353
2.
2. A. Hohl, A. Gavrielides, T. Erneux, and V. Kovanis, “Localized synchronization in two coupled nonidentical semiconductor lasers,” Phys. Rev. Lett. 78, 47454748 (1997).
http://dx.doi.org/10.1103/PhysRevLett.78.4745
3.
3. I. Schreiber and M. Marek, “Strange attractors in coupled reaction diffusion cells,” Phys. D 5, 258272 (1982).
http://dx.doi.org/10.1016/0167-2789(82)90021-5
4.
4. M. Dolnik and I. R. Epstein, “Coupled chaotic chemical oscillators,” Phys. Rev. E 54, 33613368 (1996).
http://dx.doi.org/10.1103/PhysRevE.54.3361
5.
5. M. Kawato and R. Suzuki, “Two coupled neural oscillators as a model of the circadian pacemaker,” J. Theoret. Biol. 86, 547575 (1980).
http://dx.doi.org/10.1016/0022-5193(80)90352-5
6.
6. J. Wei and M. Y. Li, “Global existence of periodic solutions in a tri-neuron network model with delays,” Phys. D 198, 106119 (2004).
http://dx.doi.org/10.1016/j.physd.2004.08.023
7.
7. S. A. Campbell, R. Edwards, and P. van den Driessche, “Delayed coupling between two neural network loops,” SIAM J. Appl. Math. 65, 316335 (2004).
http://dx.doi.org/10.1137/S0036139903434833
8.
8. S. A. Campbell, I. Ncube, and J. Wu, “Multistability and stable asynchronous periodic oscillations in a multiple-delayed neural system,” Phys. D 214, 101119 (2006).
http://dx.doi.org/10.1016/j.physd.2005.12.008
9.
9. F. M. Atay, “Delay-induced stability: from oscillators to networks,” in Complex Time-Delay Systems, Underst. Complex Syst. (Springer, Berlin, 2010) pp. 4562.
10.
10. F. M. Atay, “Van der Pol's oscillator under delayed feedback,” J. Sound Vibration 218, 333339 (1998).
http://dx.doi.org/10.1006/jsvi.1998.1843
11.
11. A. Maccari, “The response of a parametrically excited van der Pol oscillator to a time delay state feedback,” Nonlinear Dynam. 26, 105119 (2001).
http://dx.doi.org/10.1023/A:1012932605171
12.
12. J. Xu and K. W. Chung, “Effects of time delayed position feedback on a van der Pol-Duffing oscillator,” Phys. D 180, 1739 (2003).
http://dx.doi.org/10.1016/S0167-2789(03)00049-6
13.
13. S. Wirkus and R. Rand, “The dynamics of two coupled van der Pol oscillators with delay coupling,” Nonlinear Dynam. 30, 205221 (2002).
http://dx.doi.org/10.1023/A:1020536525009
14.
14. X. Li, J. C. Ji, and C. Hansen, “Dynamics of two delay coupled van der Pol oscillators,” Mechanics Research Communications 33, 614627 (2006).
http://dx.doi.org/10.1016/j.mechrescom.2005.09.009
15.
15. J. M. Zhang and X. S. Gu, “Stability and bifurcation analysis in the delay-coulped van der Pol oscillators,” Appl. Math. Model. 34, 22912299 (2010).
http://dx.doi.org/10.1016/j.apm.2009.10.037
16.
16. Y. L. Song, “Hopf bifurcation and spatio-temporal patterns in delay-coupled van der Pol oscillators,” Nonlinear Dynam. 63, 223237 (2011).
http://dx.doi.org/10.1007/s11071-010-9799-y
17.
17. K. Bar-Eli, “On the stability of coupled chemical oscillators,” Phys. D 14, 242252 (1985).
http://dx.doi.org/10.1016/0167-2789(85)90182-4
18.
18. D. G. Aronson, G. B. Ermentrout, and N. Kopell, “Amplitude response of coupled oscillators,” Phys. D 41, 403449 (1990).
http://dx.doi.org/10.1016/0167-2789(90)90007-C
19.
19. M. Y. Kim, R. Roy, J. L. Aron, T. W. Carr, and I. B. Schwartz, “Scaling Behavior of Laser Population Dynamics with Time-Delayed Coupling: Theory and Experiment,” Phys. Rev. Lett. 94, 088101 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.088101
20.
20. P. Kumar, A. Prasad, and R. Ghosh, “Stable phase-locking of an external-cavity diode laser subjected to external optical injection,” J. Phys. B 41, 135402 (2008).
http://dx.doi.org/10.1088/0953-4075/41/13/135402
21.
21. M. Rosenblum and A. Pikovsky, “Delayed feedback control of collective synchrony: An approach to suppression of pathological brain rhythms,” Phys. Rev. E 70, 041904 (2004).
http://dx.doi.org/10.1103/PhysRevE.70.041904
22.
22. A. Schnitzler and J. Gross, “Normal and pathological oscillatory communication in the brain,” Nat. Rev. Neurosci 6, 285296 (2005).
http://dx.doi.org/10.1038/nrn1650
23.
23. D. J. Selkoe, “Toward a comprehensive theory for Alzheimer's disease. Hypothesis: Alzheimer's disease is caused by the cerebral accumulation and cytotoxicity of amyloid beta-protein,” Ann. N. Y. Acad. Sci. 924, 1725 (2000).
http://dx.doi.org/10.1111/j.1749-6632.2000.tb05554.x
24.
24. R. E. Tanzi, “The synaptic Abold beta hypothesis of Alzheimer disease,” Nat Neurosci. 8, 977979 (2005).
http://dx.doi.org/10.1038/nn0805-977
25.
25. B. Caughey and P. T. Lansbury, “Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders,” Annu. Rev. Neurosci. 26, 267298 (2003).
http://dx.doi.org/10.1146/annurev.neuro.26.010302.081142
26.
26. A. Koseska and E. Volkov, “Parameter mismatches and oscillation death in coupled oscillators,” Chaos 20, 023132 (2010).
http://dx.doi.org/10.1063/1.3456937
27.
27. D. V. Reddy, A. Sen, and G. L. Johnston, “Time delay induced death in coupled limit cycle oscillators,” Phys. Rev. Lett. 80, 51095112 (1998).
http://dx.doi.org/10.1103/PhysRevLett.80.5109
28.
28. K. Konishi, “Amplitude death induced by dynamic coupling,” Phys. Rev. E 68, 067202 (2003).
http://dx.doi.org/10.1103/PhysRevE.68.067202
29.
29. R. Karnatak, R. Ramaswamy, and A. Prasad, “Amplitude death in the absence of time delays in identical coupled oscillators,” Phys. Rev. E 76, 035201 (2007).
http://dx.doi.org/10.1103/PhysRevE.76.035201
30.
30. D. V. Reddy, A. Sen, and G. L. Johnston, “Time delay effects on coupled limit cycle oscillators at Hopf bifurcation,” Phys. D 129, 1534 (1999).
http://dx.doi.org/10.1016/S0167-2789(99)00004-4
31.
31. Y. Song, J. Wei, and Y. Yuan, “Stability switches and Hopf bifurcations in a pair of delay-coupled oscillators,” J. Nonlinear. Sci. 17, 145166 (2007).
http://dx.doi.org/10.1007/s00332-006-0802-1
32.
32. K. Pyragas, “Continuous control of chaos by self-controlling feedback,” Phys. Lett. A 170, 421428 (1992).
http://dx.doi.org/10.1016/0375-9601(92)90745-8
33.
33. A. Ahlborn and U. Parlitz, “Stabilizing Unstable Steady States Using Multiple Delay Feedback Control,” Phys. Rev. Lett. 93, 264101 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.264101
34.
34. A. Ahlborn and U. Parlitz, “Controlling dynamical systems using multiple delay feedback control,” Phys. Rev. E 72, 016206 (2005).
http://dx.doi.org/10.1103/PhysRevE.72.016206
35.
35. K. B. Blyuss, Y. N. Kyrychko, P. Hvel, and E. Schll, “Control of unstable steady states in neutral time-delayed systems,” Eur. Phys. J. B. 65, 571576 (2008).
http://dx.doi.org/10.1140/epjb/e2008-00371-x
36.
36. J. Xu, K. W. Chung, and C. L. Chan, “An efficient method for studying weak resonant double Hopf bifurcation in nonlinear systems with delayed feedbacks,” SIAM J. Appl. Dyn. Syst. 6, 2960 (2007).
http://dx.doi.org/10.1137/040614207
37.
37. A. Sen, R. Dodla, G. L. Johnston, and G. C. Sethia, “Amplitude death, synchrony, and chimera states in delay coupled limit cycle oscillators,” in Complex time-delay systems, Underst. Complex Syst. (Springer, Berlin, 2010) pp. 143.
38.
38. K. W. Chung, C. L. Chan, and J. Xu, “An Efficient Method for Switching Branches of Period-doubling Bifurcations of Strongly Non-linear Autonomous Oscillators with Many Degrees of Freedom,” Journal of Sound and Vibration 267, 787808 (2003).
http://dx.doi.org/10.1016/S0022-460X(02)01437-2
39.
39. K. Gu, N.-I. Niculescu, and J. Chen, “On stability crossing curves for general systems with two delays,” J. Math. Anal. Appl. 311, 231253 (2005).
http://dx.doi.org/10.1016/j.jmaa.2005.02.034
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/11/10.1063/1.4834115
Loading
/content/aip/journal/adva/3/11/10.1063/1.4834115
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/3/11/10.1063/1.4834115
2013-11-20
2016-12-08

Abstract

In this paper, we perform a stability analysis of a pair of van der Pol oscillators with delayed self-connection, position and velocity couplings. Bifurcation diagram of the damping, position and velocity coupling strengths is constructed, which gives insight into how stability boundary curves come into existence and how these curves evolve from small closed loops into open-ended curves. The van der Pol oscillator has been considered by many researchers as the nodes for various networks. It is inherently unstable at the zero equilibrium. Stability control of a network is always an important problem. Currently, the stabilization of the zero equilibrium of a pair of van der Pol oscillators can be achieved only for small damping strength by using delayed velocity coupling. An interesting question arises naturally: can the zero equilibrium be stabilized for an arbitrarily large value of the damping strength? We prove that it can be. In addition, a simple condition is given on how to choose the feedback parameters to achieve such goal. We further investigate how the in-phase mode or the out-of-phase mode of a periodic solution is related to the stability boundary curve that it emerges from a Hopf bifurcation. Analytical expression of a periodic solution is derived using an integration method. Some illustrative examples show that the theoretical prediction and numerical simulation are in good agreement.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/11/1.4834115.html;jsessionid=sJrJUh7Qed7qqcTUi426M58M.x-aip-live-02?itemId=/content/aip/journal/adva/3/11/10.1063/1.4834115&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/3/11/10.1063/1.4834115&pageURL=http://scitation.aip.org/content/aip/journal/adva/3/11/10.1063/1.4834115'
Right1,Right2,Right3,