Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/3/11/10.1063/1.4834335
1.
1. M. S. Kushwaha, P. Halevi, L. Dobrzynski, and B. Djafari-Rouhani, “Acoustic band structure of periodic elastic composites,” Phys. Rev. Lett. 71, 20222025 (1993).
http://dx.doi.org/10.1103/PhysRevLett.71.2022
2.
2. M. M. Sigalas and N. Garcıía, “Theoretical study of three dimensional elastic band gaps with the finite-difference time-domain method,” Journal of Applied Physics 87, 3122 (2000).
http://dx.doi.org/10.1063/1.372308
3.
3. D. Goettler et al.Realizing the frequency quality factor product limit in silicon via compact phononic crystal resonators,” Journal of Applied Physics 108, 084505 (2010).
http://dx.doi.org/10.1063/1.3475987
4.
4. S. Mohammadi, A. A. Eftekhar, W. D. Hunt, and A. Adibi, “High-Q micromechanical resonators in a two-dimensional phononic crystal slab,” Applied Physics Letters 94, 051906 (2009).
http://dx.doi.org/10.1063/1.3078284
5.
5. J. Vasseur, P. Deymier, B. Djafari-Rouhani, Y. Pennec, and A-C. Hladky-Hennion, “Absolute forbidden bands and waveguiding in two-dimensional phononic crystal plates,” Physical Review B 77, 085415 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.085415
6.
6. S.-C. S. Lin, B. R. Tittmann, J.-H. Sun, T.-T. Wu, and T. J. Huang, “Acoustic beamwidth compressor using gradient-index phononic crystals,” Journal of Physics D: Applied Physics 42, 185502 (2009).
http://dx.doi.org/10.1088/0022-3727/42/18/185502
7.
7. T.-T. Wu, L.-C. Wu, and Z.-G. Huang, “Frequency band-gap measurement of two-dimensional air/silicon phononic crystals using layered slanted finger interdigital transducers,” Journal of Applied Physics 97, 094916 (2005).
http://dx.doi.org/10.1063/1.1893209
8.
8. M. Ziaei-Moayyed, M. F. Su, C. Reinke, I. F. El-Kady, and R. H. Olsson III, “Silicon Carbide Phononic Crystal Cavities for Micromechanical Resonators,” in IEEE MEMS 13771381 (2011).
9.
9. C. M. Reinke, M. F. Su, R. H. Olsson, and I. El-Kady, “Realization of optimal bandgaps in solid-solid, solid-air, and hybrid solid-air-solid phononic crystal slabs,” Applied Physics Letters 98, 061912 (2011).
http://dx.doi.org/10.1063/1.3543848
10.
10. S. Mohammadi, A. A. Eftekhar, A. Khelif, W. D. Hunt, and A. Adibi, “Evidence of large high frequency complete phononic band gaps in silicon phononic crystal plates,” Applied Physics Letters 92, 221905 (2008).
http://dx.doi.org/10.1063/1.2939097
11.
11. S. Alaie, M. F. Su, D. F. Goettler, I. El-Kady, and Z. Leseman, “Effects of flexural and extensional excitation modes on the transmission spectrum of phononic crystals operating at gigahertz frequencies,” Journal of Applied Physics 113, 103513 (2013).
http://dx.doi.org/10.1063/1.4790485
12.
12. Amir H. Safavi-Naeini and Oskar Painter, “Design of Optomechanical Cavities and Waveguides on a Simultaneous Bandgap,” Optics Express 18, 1492614943 (2010).
http://dx.doi.org/10.1364/OE.18.014926
13.
13. Y. M. Soliman et al.Phononic crystals operating in the gigahertz range with extremely wide band gaps,” Applied Physics Letters 97, 193502 (2010).
http://dx.doi.org/10.1063/1.3504701
14.
14. N.-K. Kuo and G. Piazza, “Ultra high frequency air/aluminum nitride fractal phononic crystals,” 2011 Joint Conference of the IEEE International Frequency Control and the European Frequency and Time Forum (FCS) Proceedings 14 (2011).
http://dx.doi.org/10.1109/FCS.2011.5977313
15.
15. N.-K. Kuo, C. Zuo, and G. Piazza, “Microscale inverse acoustic band gap structure in aluminum nitride,” Applied Physics Letters 95, 093501 (2009).
http://dx.doi.org/10.1063/1.3213345
16.
16. N.-K. Kuo and G. Piazza, “Evidence of acoustic wave focusing in a microscale 630 MHz Aluminum Nitride phononic crystal waveguide,” 2010 IEEE International Frequency Control Symposium 530533 (2010).
http://dx.doi.org/10.1109/FREQ.2010.5556274
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/11/10.1063/1.4834335
Loading
/content/aip/journal/adva/3/11/10.1063/1.4834335
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/3/11/10.1063/1.4834335
2013-11-20
2016-12-09

Abstract

Insight into phononic bandgap formation is presented using a first principles-type approach where phononic lattices are treated as coupled oscillators connected via massless tethers. The stiffness of the tethers and the mass of the oscillator are varied and their influences on the bandgap formation are deduced. This analysis is reinforced by conducting numerical simulations to examine the modes bounding the bandgap and highlighting the effect of the above parameters. The analysis presented here not only sheds light on the origins of gap formation, but also allows one to define design rules for wide phononic gaps and maximum gap-to-midgap ratios.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/11/1.4834335.html;jsessionid=c5kTen1dJKDkpfjM46pzX0zx.x-aip-live-03?itemId=/content/aip/journal/adva/3/11/10.1063/1.4834335&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/3/11/10.1063/1.4834335&pageURL=http://scitation.aip.org/content/aip/journal/adva/3/11/10.1063/1.4834335'
Right1,Right2,Right3,