Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/3/11/10.1063/1.4834355
1.
1. T. Sekitani, U. Zschieschang, H. Klauk, and T. Someya, Nat. Mater. 9(12), 10151022 (2010).
http://dx.doi.org/10.1038/nmat2896
2.
2. K. Myny, S. Steudel, S. Smout, P. Vicca, F. Furthner, B. van der Putten, A. K. Tripathi, G. H. Gelinck, J. Genoe, W. Dehaene, and P. Heremans, Org. Electron. 11(7), 11761179 (2010).
http://dx.doi.org/10.1016/j.orgel.2010.04.013
3.
3. C. Tanase, P. W. M. Blom, D. M. de Leeuw, and E. J. Meijer, Phys. Status Solidi. A 201(6), 12361245 (2004).
http://dx.doi.org/10.1002/pssa.200404340
4.
4. G. Horowitz, J. Mater. Res. 19(7), 19461962 (2004).
http://dx.doi.org/10.1557/JMR.2004.0266
5.
5. M. A. Alam, A. Dodabalapur, and M. R. Pinto, IEEE Trans. Electron Devices 44(8), 13321337 (1997).
http://dx.doi.org/10.1109/16.605477
6.
6. L. A. Majewski, R. Schroeder, and M. Grell, J. Phys. D: Appl. Phys. 37(1), 2124 (2004).
http://dx.doi.org/10.1088/0022-3727/37/1/005
7.
7. T. W. Hickmott, J. Appl. Phys. 89(10), 55025508 (2001).
http://dx.doi.org/10.1063/1.1366653
8.
8. A. F. Hebard, S. A. Ajuria, and R. H. Eick, Appl. Phys. Lett. 51(17), 13491351 (1987).
http://dx.doi.org/10.1063/1.98675
9.
9. H. C. Lin, P. D. Ye, and G. D. Wilk, Appl. Phys. Lett. 87(18), 182904182903 (2005).
http://dx.doi.org/10.1063/1.2120904
10.
10. L. A. Majewski, R. Schroeder, and M. Grell, Adv. Mater. 17(2), 192196 (2005).
http://dx.doi.org/10.1002/adma.200400809
11.
11. J. Park, S. Y. Park, S. O. Shim, H. Kang, and H. H. Lee, Appl. Phys. Lett. 85(15), 32833285 (2004).
http://dx.doi.org/10.1063/1.1805703
12.
12. S. Kobayashi, T. Nishikawa, T. Takenobu, S. Mori, T. Shimoda, T. Mitani, H. Shimotani, N. Yoshimoto, S. Ogawa, and Y. Iwasa, Nat. Mater. 3(5), 317322 (2004).
http://dx.doi.org/10.1038/nmat1105
13.
13. C. Kim, A. Facchetti, and T. J. Marks, Science 318(5847), 7680 (2007).
http://dx.doi.org/10.1126/science.1146458
14.
14. Y. Jang, D. H. Kim, Y. D. Park, J. H. Cho, M. Hwang, and K. W. Cho, Appl. Phys. Lett. 88(7) (2006).
http://dx.doi.org/10.1063/1.2173633
15.
15. J. Puigdollers, C. Voz, A. Orpella, R. Quidant, I. Martin, M. Vetter, and R. Alcubilla, Org. Electron. 5(1–3), 6771 (2004).
http://dx.doi.org/10.1016/j.orgel.2003.10.002
16.
16. R. D. Yang, T. Gredig, C. N. Colesniuc, J. Park, I. K. Schuller, W. C. Trogler, and A. C. Kummel, Appl. Phys. Lett. 90(26), 2635063 (2007).
http://dx.doi.org/10.1063/1.2749092
17.
17. J. Zhang, J. Wang, H. B. Wang, and D. H. Yan, Appl. Phys. Lett. 84(1), 142144 (2004).
http://dx.doi.org/10.1063/1.1638634
18.
18. A. Borras, O. Groning, M. Aguirre, F. Gramm, and P. Groning, Langmuir 26(8), 57635771 (2010).
http://dx.doi.org/10.1021/la1003758
19.
19. W. Y. Tong, A. B. Djurisic, M. H. Xie, A. C. M. Ng, K. Y. Cheung, W. K. Chan, Y. H. Leung, H. W. Lin, and S. Gwo, J. Phys. Chem. B 110(35), 1740617413 (2006).
http://dx.doi.org/10.1021/jp062951q
20.
20. F. X. Wang, Y. D. Liu, and G. B. Pan, Mater. Lett. 65(5), 933936 (2011).
http://dx.doi.org/10.1016/j.matlet.2010.12.012
21.
21. B. E. Schuster, T. V. Basova, V. A. Plyashkevich, H. Peisert, and T. Chasse, Thin Solid Films 518(23), 71617166 (2010).
http://dx.doi.org/10.1016/j.tsf.2010.06.030
22.
22. T. Enokida and R. Hirohashi, Chem. Mater. 3(5), 918921 (1991).
http://dx.doi.org/10.1021/cm00017a030
23.
23. H. Jiang, K. J. Tan, K. K. Zhang, X. D. Chen, and C. Kloc, J. Mater. Chem. 21(13), 47714773 (2011).
http://dx.doi.org/10.1039/c0jm04383d
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/11/10.1063/1.4834355
Loading
/content/aip/journal/adva/3/11/10.1063/1.4834355
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/3/11/10.1063/1.4834355
2013-11-20
2016-09-30

Abstract

Polyvinyl alcohol (PVA) and anodized AlO layers were used as bi-layer gate for the fabrication of cobalt phthalocyanine (CoPc) wire base field-effect transistors (OFETs). CoPc wires were grown on SiO surfaces by organic vapor phase deposition method. These devices exhibit a field-effect carrier mobility) value of 1.11 cm2/Vs. The high carrier mobility for CoPc molecules is attributed to the better capacitive coupling between the channel of CoPc wires and the gate through organic-inorganic dielectric layer. Our measurements also demonstrated the way to determine the thicknesses of the dielectric layers for a better process condition of OFETs.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/11/1.4834355.html;jsessionid=em5xTb9weSWITXWtuEJryHUy.x-aip-live-06?itemId=/content/aip/journal/adva/3/11/10.1063/1.4834355&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/3/11/10.1063/1.4834355&pageURL=http://scitation.aip.org/content/aip/journal/adva/3/11/10.1063/1.4834355'
Right1,Right2,Right3,