Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004).
2. A. K. Geim, Science 324, 1530 (2009).
3. P. Blake, D. P. Brimicombe, R. R. Nair, T. J. Booth, Da. Jiang, F. Schedin, L. A. Ponomarenko, S. V. Morozov, H. F. Gleeson, E. W. Hill, A. K. Geim, and K. S. Novoselov, Nano Lett. 8, 1704 (2008).
4. K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, Nature 457, 706 (2009).
5. S. Y. Kwon, C. V. Ciobanu, V. Petrova, V. B. Shenoy, J. Bareno, V. Gambin, I. Petrov, and S. Kodambaka, Nano Lett. 9, 3985 (2009).
6. P. W. Sutter, J.-I. Flege, and E. A. Sutter, Nat. Mater. 7, 406 (2008).
7. J. Coraux, A. T. N’Diaye, C. Busse, and T. Michely, Nano Lett. 8, 565 (2008).
8. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, Science 324, 1312 (2009).
9. C. Mattevi, H. Kima, and M. Chhowalla, J. Mater.Chem. 21, 3324 (2011).
10. E. G. Acheson, United States Patent 568323 (1896).
11. W. C. Arsem, Ind. Eng. Chem. 3, 799 (1911).
12. B. C. Banerjee, T. J. Hirt, and P. L. Walker, Nature 192, 450 (1961).
13. A. E. Karu and M. J. Beer, J. Appl. Phys. 37, 2179 (1966).
14. J. C. Shelton, H. R. Patil, and J. M. Blakely, Surf. Sci. 43, 493 (1974).
15. M. Losurdo, M. M. Giangregorio, P. Capezzuto, and G. Bruno, Phys. Chem. Chem. Phys. 13, 20836 (2011).
16. X. Li, W. Cai, L. Colombo, and R. S. Ruoff, Nano Lett. 9, 4268 (2009).
17. Q. Yu, J. Lian, S. Siriponglert, H. Li, Y. P. Chen, and S. S. Pei, Appl. Phys. Lett. 93, 113103 (2008).
18. A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, Nano Lett. 9, 30 (2009).
19. S. Nie, A. L. Walter, N. C. Bartelt, E. Starodub, A. Bostwick, E. Rotenberg, and K. F. McCarty, ACS Nano 5, 2298 (2011).
20. Z. Luo, Y. Lu, D. W. Singer, M. E. Berck, L. A. Somers, B. R. Goldsmith, A. T. Charlie Johnson, Chem. Mater. 23, 1441 (2011).
21. W. Wu, Q. Yu, P. Peng, Z. Liu, J. Bao, S. Pei, Nanotechnology 23, 035603 (2012).
22. C. Hwang, K. Yoo, S. J. Kim, E. K. Seo, H. Yu, and L. P. Bir, J. Phys. Chem. C 115, 22369 (2011).
23. I. Vlassiouk, M. Regmi, P. Fulvio, S. Dai, P. Datskos, G. Eres, and S. Smirnov, ACS Nano 5, 6069 (2011).
24. A. W. Robertson and J. H. Warner, Nano Lett. 11, 1182 (2011).
25. A. Y. Tontegode, Prog. Surf. Sci. 38, 201 (1991).
26. N. R. Gall, E. V. Rut’Kov, and A. Y. Tontegode, Int. J. Mod. Phys. B 11, 1865 (1997).
27. S. Nie, W. Wu, S. Xing, Q. Yu, J. Bao, S. Pei, K. F. McCarty, New J Phys. 14, 093028 (2012).
28. R. Rossei, M. De Crescenzi, F. Sette, C. Quaresima, A. Savoia, and P. Perfetti, Phys. Rev. B 28, 1161 (1983).
29. A. Y. Tontegode and E. V. Rut'kov, Phys. Usp. 36, 1053 (1993).
30. Q. Li, H. Chou, J. Zhong, J. Liu, A. Dolocan, J. Zhang, Y. Zhou, R. S. Ruoff, S. Chen, and W. Cai, Nano Lett. 13, 486 (2013).
31. W. Fang, A. L. Hsu, R. Caudillo, Y. Song, A. G. Birdwell, E. Zakar, M. Kalbac, M. Dubey, T. Palacios, M. S. Dresselhaus, P. T. Araujo, and J. Kong, Nano Lett. 13, 1541 (2013).
32. Y. Cui, Q. Fu, and X. Bao, Phys. Chem. Chem. Phys. 12, 5053 (2010).
33. R. Mu, Q. Fu, L. Jin, L. Yu, G. Fang, D. Tan, and X. Bao, Chem. Int. Ed. 51, 4856 (2012).
34. E. Loginova, N. C. Bartelt, P. J. Feibelman, and K. F. McCarty, New J Phys. 11, 063046 (2009).
35. L. Gao, W. Ren, H. Xu, L. Jin, Z. Wang, T. Ma, L. P. Ma, Z. Zhang, Q. Fu, L. Peng, X. Bao, and H. Cheng, Nature Commun. 3, 699 (2012).
36. A. C. Ferrari, Solid State Commun. 143, 47 (2007).
37. L. M. Malard, M. A. Pimenta, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rep. 473, 51 (2009).
38. S. J. Chae, F. Gunes, K. K. Kim, E. S. Kim, G. H. Han, S. M. Kim, H. Shin, S. Yoon, J. Choi, M. H. Park, C. W. Yang, D. Pribat, and Y. H. Lee, Adv. Mater. 21, 2328 (2009).

Data & Media loading...


Article metrics loading...



We present a simple and very convincing approach to visualizing that subsequent layers of graphene grow between the existing monolayer graphene and the copper catalyst in chemical vapor deposition (CVD). Graphene samples were grown by CVD and then transferred onto glass substrates by the in two ways, either direct-transfer (DT) to yield poly (methyl methacrylate) (PMMA)/graphene/glass or (2) inverted transfer (IT) to yield graphene/PMMA/glass. Field emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM) were used to reveal surface features for both the DT and IT samples. The results from FE-SEM and AFM topographic analyses of the surfaces revealed the underlayer growth of subsequent layers. The subsequent layers in the IT samples are visualized as 3D structures, where the smaller graphene layers lie above the larger layers stacked in a concentric manner. The results support the formation of the so-called “inverted wedding cake” stacking in multilayer graphene growth.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd